什么是Logit回归?
Logit回归(又称逻辑回归、罗杰斯蒂回归、Logistic回归)无疑是社会科学,尤其是社会学研究中使用最广的方法,没有之一。这也是因为社会科学中变量的类型所决定的。因变量的类型决定着回归模型的使用,对于社会科学中常用的类别变量对应的就是Logit回归。
Logit回归又不同于一般线性回归,一般线性回归的回归系数以及R方等较容易解释,但是Logit回归的数学原理中涉及到了对数转换等,所以解释起来与一般线性回归有着较多的不同之处。
Logit回归系数有哪些不同一般线性回归的解释相对较容易,即x没变化多少个单位,y的变化。但是,由于Logit回归进行了Logit转换,所以就不能像线性回归一样解释,因为因变量已经变成ln(p/1-p),我们不能再说x变化多少个单位ln(p/1-p)变化多少,这样没有实际的意义。而logit回归的本质是针对因变量为分类变量,即相较于另一种情况,某一情况的发生概率。所以针对logit回归的这一特性,我们需要汇报OR值(odds ratio),也称发生比。
可能这样理解起来较为抽象,我们来看一个例子:
上表来源:薛海平. 2015. 从学校教育到影子教育:教育竞争与社会再生产[J]. 北京大学教育评论(03): 47-69+188-189.</