模型与logit_基础方法 | 如何用Logit回归模型写论文?

Logit回归是社会科学常用的方法,尤其适合类别变量。与线性回归不同,Logit回归解释时需关注OR值,即发生比,而非直接的系数变化。例如,东部地区学生参加补习的概率是西部地区的1.491倍。Logit回归在论文中可以汇报系数或OR值,或者两者结合,具体取决于作者偏好。汇报OR值能更直观地显示影响程度,如恶劣天气使飞机延误概率提升75.86%或1.76倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Logit回归?

Logit回归(又称逻辑回归、罗杰斯蒂回归、Logistic回归)无疑是社会科学,尤其是社会学研究中使用最广的方法,没有之一。这也是因为社会科学中变量的类型所决定的。因变量的类型决定着回归模型的使用,对于社会科学中常用的类别变量对应的就是Logit回归。

Logit回归又不同于一般线性回归,一般线性回归的回归系数以及R方等较容易解释,但是Logit回归的数学原理中涉及到了对数转换等,所以解释起来与一般线性回归有着较多的不同之处。

Logit回归系数有哪些不同

一般线性回归的解释相对较容易,即x没变化多少个单位,y的变化。但是,由于Logit回归进行了Logit转换,所以就不能像线性回归一样解释,因为因变量已经变成ln(p/1-p),我们不能再说x变化多少个单位ln(p/1-p)变化多少,这样没有实际的意义。而logit回归的本质是针对因变量为分类变量,即相较于另一种情况,某一情况的发生概率。所以针对logit回归的这一特性,我们需要汇报OR值(odds ratio),也称发生比。

可能这样理解起来较为抽象,我们来看一个例子:

0a79c933ebeed35cc91fa06d07d58740.png

上表来源:薛海平. 2015. 从学校教育到影子教育:教育竞争与社会再生产[J]. 北京大学教育评论(03): 47-69+188-189.</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值