逻辑回归模型总结(Logistic Regression)

Logistic回归模型是一般线性回归模型的改进,一般线性回归模型中,假定 y ∼ N ( μ , σ 2 ) y \sim N(\mu , \sigma^2) yN(μ,σ2)。当反应变量 y y y是二分类或0—1变量时,此时 y y y是服从Bernoulli分布(也称0-1分布或两点分布)的随机变量,即 y ∼ B ( n , p ) y \sim B(n, p) yB(n,p)

Logistic回归函数是 y y y 值限制在[0, 1]区间内的连续函数,应用较多的是Logistic函数(也称Logit变换),其形式为:

Logistic回归模型的本质就是对数线性回归模型

Logistic回归模型的参数估计方法
1、极大似然估计(最常用),用Newton-Raphson迭代求解,在一些情况下,Newton-Raphson迭代的收敛性不好,可改用Marquardt改进的Newton-Raphson迭代法求解;
2、根据广义线性模型的理论用加权最小二乘法迭代求解
两种方法求出的结果基本相同

Logistic回归模型的参数检验
Fisher信息阵

过拟合和欠拟合
1、过拟合
就是训练出的模型可以很好的适应所有的训练样本,但是对测试样本不能很好的预测,即模型在训练集上学习了过多的规则,而这种规则并不是一种普适的规则,从而导致模型的外推能力或泛化能力下降。

2、欠拟合
是指模型在训练集上学习到较少的规则,在训练集与测试集上的表现均不理想。

Logistic Regression(LR)如何处理过拟合问题?
解决过拟合的方法有两个
(1)降维
使用PCA降维,使得模型变量个数减少,次数也降低。
(2)增加正则化项
对LR添加L1正则项或者L2正则项,L1正则化会导致参数值变为0,但是L2却只会使得参数值减小,这是因为L1的导数是固定的,参数值每次的改变量是固定的,而L2会由于自己变小改变量也变小。

评分卡模型为什么要选择使用Logistic回归模型?
1、可以输出概率;
2、可解释性好;
3、模型参数少。

sigmoid函数
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1+e^{-x}} sigmoid(x)=1+ex1
在这里插入图片描述

运用sigmoid函数将概率值转化为分类标签,即概率大于等于0.5被判断为正例,小于0.5被判断为负例

线上信贷场景为什么要使用评分卡模型?
1、对于策略无法有效识别的大量灰色客群,需要使用评分卡进行风险判断;
2、随着线上信贷场景的扩展,业务量的快速增加,业务逐渐变得复杂,策略规则已经无法满足更细的切分需求

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归(Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值