python dataframe 返回接口_SPL 中调用 Python 程序

本文介绍了如何在集算器SPL中通过ym_exec接口调用Python模块,包括环境配置、python模块开发规范和PLS算法应用实例。重点讲解了如何配置SPL与Python通信,以及如何编写和测试Python模块以配合SPL的数据处理需求。
摘要由CSDN通过智能技术生成

【摘要】
集算器 SPL 集成了对 python 程序的调用,也提供对建模算法接口支持。具体开发要求、使用详细情况,请前往乾学院:SPL 中调用 Python 程序!

集算器是强大的数据计算引擎,但目前对于机器学习算法的提供还不够丰富。而 python 中有许多此类算法。借助 YM 外部库,就可以让集算器 SPL 调用 python 写的代码,从而弥补这一不足。

下面具体说明:

1.SPL 与 python 环境配置

2.python 模块开发规范要求

3.ym_exec 接口调用

4.建模算法模块使用

SPL、python、接口关系示意图:

44934771f78f0bdf2c4c7889b43e0710.png

SPL 中调用 ym_exec 接口,将参数传递给 python 下的 apply() 接口,apply 调用 python 程序处理后返回结果给 SPL。

1. SPL 与 python 环境配置

为了 SPL 与 python 之间能通信,实现相互访问,需要进行有关的设置。
下面以在 win10 下,python3.7+SPL 为例来说明如何设置的。

本接口依赖集算器 SPL 外部库 Yimming。 Yimming 与 python 通过 userconfig.xml 关联。 A、安装 Python 软件:
下载 python3 软件安装包,安装位置如 c:Program FilesraqsoftyimmingPython37。 B:外部库安装:
缺省安装在集算器 SPL 软件的 esProcextlibYimming 路径下,在集算器的外部库设置中勾选 Yimming 项让其生效。( 通过外部库指南能找到 Yimming jar 依赖包 )

a038c6c15d98851c65de390eab3a41b9.png

C、 配置文件: 在外部库目录 esProcextlibYimminguserconfig.xml 文件中设置参数,参数如下:

选项名称说明
sAppHomeC:Program Filesraqsoftyimming应用程序目录
sPythonHomec:Program Filesraqsoftyimming
Python37python.exe
Python文件
sPythonHostlocalhost网络 IP
iPythonScriptPort8512网络端口

D、服务端程序应用程序指提供的 python 服务端程序:

a8563e70e0f5cdf0523ffdf6d716ee75.png

以上配置完成之后,重启集算器后就可以使用 ym_exec() 接口。

2. python 模块开发规范要求

A、def apply(ls) 接口,python 程序的对外接口,实现与 SPL 交互处理。
B、参数 ls 为 list 数据类型,它类似于 java 中的入口函数 void main(string argv[]) 中的 argv 参数。
C、返回值,返回 dataframe 结构数据存放在 list 类型的变量中, 可在 SPL 中显示。
D、样例说明:demo.py
import pandas as pd
import sys
def apply(lists):
cols = ["value"]
ls = []
for x in lists:
ls.append("{}".format(x))
df = pd.DataFrame(ls, columns=cols)
lls=[]
lls.append(df)
return lls
if __name__ == "__main__":
res = apply(sys.argv[1:])
print('res={}'.format(res))运行:python demo.py "AAA" "BBB" 1000输出:res=[ value
0 AA
1 BBB
2 1000]
本程序 apply()接口,实现将传递的参数加入到变量列表 ls 中,然后 ls 放入 dataframe 结构里,dataframe 再放入要返回的变量列表 lls 里。开发中,先在 python 下测试 apply() 接口正常后,就可以在 SPL 中调用了。

需要注意的是,由于 dataframe 是通过 msgpack 编码后返回的数据,因此要求 dataframe 中同一列的数据类型一致,否则 msgpack 编码时出错,SPL 中收不到 dataframe 数据.

3.ym_exec 接口调用 格式:ym_exec(pyfile, p1,p2,…)。
调用pyfile文件并运行它,后面跟传入的参数 p1,p2 等。参数个数不定, 只要与接口 apply() 对应。

具体用法 如 demo.py:

06578a6eb8545eae93c253feaed0a899.png

运行结果:

8cf0ecb1fec87a382fb80befa9166677.png

4. 建模算法模块使用

下面再演示一下如何在集算器调用 python 实现偏最小二乘算法(PLS,目前集算器本身未提供)。在运行它之前,需要安装易明外部库,配置设置参考《SPL实现自动建模和预测》。

由于 PLS 算法的参数较为复杂,我们将调用格式约定为:ym_exec(pyfile, data, jsonstr)

SPL中调用pyfile文件并运行它,data 为需要建模的数据(序表),将 PLS 算法众多参数写成 json 串。同样地,需要与 pyfile 中 apply() 处理对应起来,才能正确解析各参数值。

data:data为预表或带头文件的数据文件名。数据中包括目标变量 target 所在的列。jsonstr: json字符串,例如:
{target:0,n_components:3,deflation_mode:'regression',
mode:'A',norm_y_weights:False,
scale:False,algorithm:'nipals',
max_iter:500,tol:0.000001,copy:True}
其中 target 指定目标变量所在的列,不可缺少。

SPL脚本pls_demo.dfx:

216f2b42d67c1a72bd2cb9b500ece4dc.png

首行为target的数据data_test.csv:

8676d5db9d989032073ccd353303adb9.png

pls_demo.py文件,针对python模块算法使用参考

from scipy.linalg import pinv2

import numpy as np

import pandas as pd

import demjson

#算法类 pls_demo:

class pls_demo():

. . . . . . .

Pass

#接口实现

def apply(lists):

if len(lists)<2:

return None

data = lists[0] # 数据参数

val = lists[1] #jsonstr 串参数

if (type(data).__name__ =="str"):

data = pd.read_csv(data)

# 1. 对 json字符串中特定值处理

#print(val)

val = val.lower().replace("false", "'False'")

val = val.replace("true", "'True'")

val = val.replace("none", "'None'")

dic = demjson.decode(val)

if dic.__contains__('target') ==False:

print("param target is not set")

return

# 2. 对 target参数的处理,它可能为列数,也可能为名称

targ = dic['target']

if type(targ).__name__ == "int":

col = data.columns

colname = col.tolist()[targ]

else:

colname = targ

Y = data[colname]

X = data.drop(colname, axis=1)

# 3. 模型参数处理,没有传递的参数需要设定缺省值.

if dic.__contains__('n_components') :n_components=dic['n_components']

else: n_components=15

if dic.__contains__('deflation_mode') :deflation_mode=dic['deflation_mode']

else: deflation_mode="regression"

if dic.__contains__('mode'):mode=dic['mode']

else: mode="A"

…….

# 4. 模型算法加载

#print("n_components={}".format(n_components))

pls_model = pls_demo(n_components,

deflation_mode,

mode,…)

# 训练数据

pls_model.fit(X, Y)

# 预测

y_pred = pls_model.predict(X)

# 5. 填充返回值

f = ["value"]

df = pd.DataFrame(y_pred, columns=f)

#print(y_pred)

lls=[]

lls.append(df)

return lls

#6. 测试
if __name__ == '__main__':
ls = []
ls.append("a2ef764c53ec1fbc_X.new.csv")
val = "{target:0,n_components:3,deflation_mode:'regression',"
"mode:'a',norm_y_weights:False,"
"scale:False,algorithm:'nipals',"
"max_iter:500,tol:0.000001,copy:True}"
ls.append(val)
apply(ls)

开发过程中,先在 python 下通过 main 函数测试 apply() 接口正常后,就可以在 SPL 中调用了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值