python数据分类案例_python使用pandas抽样训练数据中某个类别实例

废话真的一句也不想多说,直接看代码吧!

# -*- coding: utf-8 -*-

import numpy

from sklearn import metrics

from sklearn.svm import LinearSVC

from sklearn.naive_bayes import MultinomialNB

from sklearn import linear_model

from sklearn.datasets import load_iris

from sklearn.cross_validation import train_test_split

from sklearn.preprocessing import OneHotEncoder, StandardScaler

from sklearn import cross_validation

from sklearn import preprocessing

import scipy as sp

from sklearn.linear_model import LogisticRegression

from sklearn.feature_selection import SelectKBest ,chi2

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

#import iris_data

'''

creativeID,userID,positionID,clickTime,conversionTime,connectionType,

telecomsOperator,appPlatform,sitesetID,positionType,age,gender,

education,marriageStatus,haveBaby,hometown,residence,appID,appCategory,label

'''

def test():

df = pd.read_table("/var/lib/mysql-files/data1.csv", sep=",")

df1 = df[["connectionType","telecomsOperator","appPlatform","sitesetID",

"positionType","age","gender","education","marriageStatus",

"haveBaby","hometown","residence","appCategory","label"]]

print df1["label"].value_counts()

N_data = df1[df1["label"]==0]

P_data = df1[df1["label"]==1]

N_data = N_data.sample(n=P_data.shape[0], frac=None, replace=False, weights=None, random_state=2, axis=0)

#print df1.loc[:,"label"]==0

print P_data.shape

print N_data.shape

data = pd.concat([N_data,P_data])

print data.shape

data = data.sample(frac=1).reset_index(drop=True)

print data[["label"]]

return

补充拓展:pandas实现对dataframe抽样

随机抽样

import pandas as pd

#对dataframe随机抽取2000个样本

pd.sample(df, n=2000)

分层抽样

利用sklean中的函数灵活进行抽样

from sklearn.model_selection import train_test_split

#y是在X中的某一个属性列

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, stratify=y)

以上这篇python使用pandas抽样训练数据中某个类别实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值