python调用随机分层抽样方法_如何使用Python进行随机分层抽样(不是训练/测试分割)?...

这是我目前为止最好的解决方案。重要的是,在每个地层之前对连续变量进行分类,并使观测值最少。在

在本例中,我是:产生人口

纯随机抽样

随机分层抽样

当比较两个样本时,分层样本更能代表总体人口。在

如果任何人有一个更好的方法,请随时分享。在import pandas as pd

import numpy as np

# Generate random population (100K)

population = pd.DataFrame(index=range(0,100000))

population['income'] = 0

population['income'].iloc[39000:80000] = 1

population['income'].iloc[80000:] = 2

population['sex'] = np.random.randint(0,2,100000)

population['age'] = np.random.randint(0,4,100000)

pop_count = population.groupby(['income', 'sex', 'age'])['income'].count()

# Random sampling (100 observations out of 100k)

random_sample = population.iloc[

np.random.randint(

0,

len(population),

int(len(population) / 1000)

)

]

# Random Stratified Sampling (100 observations out of 100k)

stratified_sample = list(map(lambda x : population[

(

population['income'] == pop_count.index[x][0]

)

&

(

population['sex'] == pop_count.index[x][1]

)

&

(

population['age'] == pop_count.index[x][2]

)

].sample(frac=0.001), range(len(pop_count))))

stratified_sample = pd.concat(stratified_sample)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值