用python写多项式拟合_多项式最小二乘法拟合的python代码实现

最近学习李航《统计学习方法》,在github上找到了这本书对应的源码,决定自己跟着敲一敲代码,也感谢代码的贡献者,链接如下:https://github.com/fengdu78/lihang-code​github.com

第一章有一个关于使用最小二乘法演示过拟合的示列,但最小二乘法的实现直接使用了scipy库中的leastsq,于是自己网上找了关于最小二乘法的矩阵求解,据此进行了简单的代码实现。关于多项式系数的最小二乘法推导如下(线代杀我 ):

实现代码如下:

def leastsq_mutifunc(x, y, m):

"""多项式最小二乘法实现:param x:输入:param y:目标输出:param m:多项式阶数:return:多项式系数"""

x = np.array(x)

y = np.array(y)

assert m <= x.shape[0], f"the number of m({m}) need less than x's size({x.shape[0]})"

assert x.shape[0] == y.shape[0], f"the size of x({x.shape[0]}) must equal to y's size({y.shape[0]}"

x_mat = np.zeros((x.shape[0], m+1))

for i in range(x.shape[0]):

x_mat_h = np.zeros((1, m+1))

for j in range(m+1):

x_mat_h[0][j] = x[i] ** (m-j)

x_mat[i] = x_mat_h

theta = np.dot(np.dot(np.linalg.inv(np.dot(x_mat.T, x_mat)), x_mat.T), y.T)

return theta

(多项式阶数)m = 1:

m = 3:

m = 9:

整体代码如下:

import numpy as np

import scipy as sp

from scipy.optimize import leastsq

import matplotlib.pyplot as plt

# target function

def real_func(x):

return np.sin(2 * np.pi * x)

# fit function

def fit_func(p, x):

"""

numpy.poly1d([1,2,3]) -> 1(x*x) + 2(x) + 3

"""

f = np.poly1d(p)

return f(x)

def residuals_func(p, x, y):

res = fit_func(p, x) - y

return res

def leastsq_mutifunc(x, y, m):

"""

多项式最小二乘法实现

:param x:输入

:param y:目标输出

:param m:多项式阶数

:return:多项式系数

"""

x = np.array(x)

y = np.array(y)

assert m <= x.shape[0], f"the number of m({m}) need less than x's size({x.shape[0]})"

assert x.shape[0] == y.shape[0], f"the size of x({x.shape[0]}) must equal to y's size({y.shape[0]}"

x_mat = np.zeros((x.shape[0], m+1))

for i in range(x.shape[0]):

x_mat_h = np.zeros((1, m+1))

for j in range(m+1):

x_mat_h[0][j] = x[i] ** (m-j)

x_mat[i] = x_mat_h

theta = np.dot(np.dot(np.linalg.inv(np.dot(x_mat.T, x_mat)), x_mat.T), y.T)

return theta

def fitting(x, y, M=0):

"""

:param M: 拟合目标函数的多项式次数

:return: 多项式系数

"""

# 初始化多项式系数

p_init = np.random.rand(M + 1)

# 最小二乘法

my_p_lsq = leastsq_mutifunc(x, y, m=M)

p_lsq = leastsq(residuals_func, p_init, args=(x, y))

print(f'fitting parameters: {p_lsq[0]}, my fitting parameters: {my_p_lsq}')

# 可视化

x_points = np.linspace(np.min(x), np.max(x), int(x.shape[0] * 10000))

plt.plot(x_points, real_func(x_points), label='real curve')

plt.plot(x_points, fit_func(p_lsq[0], x_points), label='fitted curve')

plt.plot(x_points, fit_func(my_p_lsq, x_points), label='my fitted curve')

plt.plot(x, y, 'bo', label='noise curve')

plt.legend()

plt.show()

return

if __name__ == '__main__':

x = np.linspace(0, 1, 10)

y_ = real_func(x)

# noise

y = [np.random.normal(0, 0.1) + y1 for y1 in y_]

p_lsq_0 = fitting(x, y, M=9)

# theta = leastsq_mutifunc(x, y, 4)

# print(theta)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值