bp神经网络用python还是matlab_神经网络研究与应用这块用python好还是matlab?

展开全部

两者或许无所谓好与坏。只要自己喜62616964757a686964616fe58685e5aeb931333365643631欢用,那就是好的,但是目前代码数量来看,可以学习的源代码MATLAB有非常多的源码。最重要的是,MATLAB里有神经网络工具箱,有可视化界面更容易调整参数。若果你是需要使用神经网络去完成某些数据分析,而你的数据又不是很多,那么建议你使用matlab,里面有已经搭建好的工具箱,非常齐全。

pathon和matlab在一些方面还是有不同点的,就像是如果你要是想将算法学好点,那么你就可以选择matlab这样比较好,但是如果是神经网络研究的话,那么MATLAB当然 是最好的,做深度学习的话,建议使用Python。想要用什么来学还要看你自己的需求,想要学什么。

在一定条件允许的情况下,可以不妨试试选择pathon,它含括了许许多多的函数,可以在一定程度上帮助自己学习,但是最好的建议还是学习MATLAB,因为matlab中还是有很多有关神经网络学的相关知识的,便于我们研究学习。Python就比较容易上手学了,不用花很多的时间去研究,基本上就可以拿来就用。

若果你对神经网络已经熟悉是,是打算投入应用,而且你的数据很大,那么根据你所需要的神经网络,用C或其他你认为性能好的语言,针对你的问题重新编一个算法,也不会花很大功夫。这样既省了自己的时间,又让自己轻松学习。总结来说,不论你学什么,用什么路径去学总是会达到想要的目的,但是重要的是在于学习的过程。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用BP神经网络进行数学建模的python实现可以通过使用一些开源的机器学习库和框架来实现。其中最常用的库是TensorFlow和Keras。以下是一个使用Python实现BP神经网络的数学建模的步骤: 1. 导入所需的库和模块,例如TensorFlow、Keras、NumPy等。 2. 准备训练数据和测试数据,将其转换为适合神经网络的形式。 3. 构建神经网络模型。可以选择使用Sequential模型或者函数式API来构建神经网络层。 4. 编译神经网络模型。指定损失函数、优化算法和评估指标。 5. 训练神经网络模型。使用训练数据对模型进行训练,并指定训练的批次大小和迭代次数。 6. 评估神经网络模型。使用测试数据对模型进行评估,并计算准确率、精确率、召回率等指标。 7. 使用神经网络模型进行预测。使用新的数据对模型进行预测,并获取预测结果。 需要注意的是,这只是一种基本的BP神经网络的实现方法,具体的实现细节可能会因为数据集和问题的不同而有所变化。另外,还可以尝试使用其他的机器学习方法来进行数学建模,如支持向量机(SVM)或决策树等。 参考文献: 用神经网络的思想,使用某个方法计算出权重,带入神经网络进行预测,会比回归思想效果更好。这里我推荐使用BP神经网络。 使用 BP 神经网络拟合多输入多输出曲线 3 Matlab神经网络工具箱。 为什么选择BP神经网络呢?因为它的非线性映射能力很强!比起直接使用回归有着很大的好处,因此我们也把线性回归这种算法叫做低级算法(我说的)。<span class="em">1</span><span class="em">2</span><span class="em">3</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值