箱线图怎么判断异常值_异常值的识别与处理,看这一篇就够了

本文详细介绍了数据分析中异常值的判断、鉴别和处理方法,包括数字标准、3σ原则、箱盒图、描述分析和散点图等工具。异常值处理策略包括设为缺失值、填补和不处理,提醒分析人员应根据情况判断是否剔除异常值,处理前最好备份数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

707a47e097db5393e92f2ca137c541d7.png

在数据分析工作中,面对收集而来的数据,数据清洗是首要环节。而异常值处理是其中的一个重要部分。下面就给大家介绍一下如何处理数据中的异常值。

一、异常值判断

何为异常值?

异常值,指的是样本中的一些数值明显偏离其余数值的样本点,所以也称为离群点。异常值分析就是要将这些离群点找出来,然后进行分析。

异常值判断

在不同的数据中,鉴别异常值有不同的标准,常规有以下几种:

    • (1)数字超过某个标准值

这是最常用的异常值判断方法之一。主要是看数据中的最大值或最小值,依据专业知识或个人经验,判断是否超过了理论范围值,数据中有没有明显不符合实际情况的错误。


比如,测量成年男性身高(M),出现17.8m这样的数据,显然不符合实际情况。


又或者,如问卷数据使用1-5级量表进行研究,出现-2,-3这类数据,则可能提示为跳转题、空选等。

    • (2)数据大于±3标准差

3σ 原则是在数据服从正态分布的时候用的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值