spearman相关性分析_相关性分析在SPSS中的具体操作,一文读懂相关系数的含义及使用——【杏花开生物医药统计】...

本文介绍了在生物医药统计中如何进行相关性分析,重点讲解了Spearman相关系数和Pearson相关系数的选择与应用。在不满足Pearson相关系数条件时,Spearman系数作为替代方案。通过SPSS进行操作实例,展示从界面设置到结果分析的完整过程,帮助理解相关系数的含义和使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c3dea860f78bfa6e39c3989427afc3ad.png

相关性分析介绍

生物和医学统计中,相关分析属于流程前端的探索性分析,研究变量间关系及性质,其结果在为下一步采取何种方法做出指引,为数据挖掘之前的基础工作。

相关系数的选择

相关分析之前,需要先确认变量的类型,根据具体类型选择合适的相关系数。Pearson相关系数适用于两变量的度量水平都是连续数值型,且两变量的总体是正态分布或者近似正态分布的情况,还有说法认为其样本量应大于30,可供参考,如果不满足上述条件,则考虑选择spearman系数或者kendall系数。

相关分析和回归分析的联系及区别

相关分析是回归分析的前提,回归分析是相关分析的进一步拓展。

分析步骤

4df97f68f8c1c8a1adb964b9e3ada998.png

相关图分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值