架构与规模
DeepSeek Coder系列基于DeepSeek V2的Transformer骨干结构,集成了混合专家(MoE, Mixture-of-Experts)技术,以在参数规模和算力资源之间实现高效平衡。其核心特点包括:
- MoE混合专家结构:DeepSeek Coder沿用了DeepSeek V2的架构理念,在模型的Transformer层中嵌入了多个专家子网络。每个专家在训练时针对不同数据类型和任务被专门优化,可视为各司其职的“编程语言专家”和“自然语言专家”。在推理阶段,模型通过门控机制(gating)动态选择与当前输入最相关的专家,仅激活其中一部分进行计算。这种设计使得模型能够拥有极大的总参数量,却只在单次推理时调用少量参数,从而显著降低计算和显存开销。
- 模型规模配置:DeepSeek Coder提供多个规模配置,包括约16B、33B和236B参数三种规格。16B版本定位为轻量级模型,适合计算资源有限但仍需要智能代码补全的场景;33B版本在性能上有所提高,适用于大多数常规开发项目;236B版本则充分利用极大容量和深度专家网络,致力于处理超大规模代码基和复杂项目,其理论能力远超常见开源模型。多种尺寸的设计可以让不同需求和算力的用户灵活选择适用版本。
- 激活参数&#x