python构建二维数组_NumPy 基础 (一) - 创建数组

这篇博客介绍了如何使用Python的NumPy库创建不同类型的二维数组,包括通过列表、全0数组、全1数组、等差序列、单位矩阵、等间隔数组以及随机数组。文章详细演示了各种创建方法,适合NumPy初学者。
摘要由CSDN通过智能技术生成

一、导入 NumPy

导入 NumPy

练习 NumPy 之前,首先需要导入 NumPy 模块,并约定简称为 np。

>>> import numpy as np

查看 NumPy 版本信息

>>> print(np.__version__)

1.16.2

二、创建数组

NumPy 的主要对象是多维数组 Ndarray。在 NumPy 中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。

例如,下方数组是一个秩为 1 的数组,因为它只有一个轴,而轴的长度为 3。

>>> [1, 2, 3]

[1, 2, 3]

又例如,下方数组的秩为 2。第一个维度长度为 2,第二个维度长度为 3。

>>> [[1, 2, 3],

... [4, 5, 6]]

[[1, 2, 3], [4, 5, 6]]

1. 通过列表创建一维数组

注意:numpy.array和 Python 标准库array.array并不相同,前者更为强大,这也就是我们学习 NumPy 的重要原因之一。

>>> np.array([1, 2, 3])

array([1, 2, 3])

2. 通过列表创建二维数组

>>> np.array([(1, 2, 3), (4, 5, 6)])

array([[1, 2, 3],

[4, 5, 6]])

3. 创建全为 0 的二维数组

>>> np.zeros((3, 3))

array([[0., 0

### Python数组二维数组的区别及用法 #### 数组 (1-D Array)数组中,所有的元素都排列成条线。这种结构非常适合表示向量或其他单维度的数据集。 ```python import numpy as np # 创建个简单的数组 one_d_array = np.array([1, 2, 3]) print(one_d_array) # 输出: [1 2 3] # 访问特定位置上的元素 element_at_index_0 = one_d_array[0] print(element_at_index_0) # 输出: 1 ``` 对于数组而言,操作相对直观,因为只需要考虑单索引来访问或修改其中任何个元素即可[^1]。 #### 二维数组 (2-D Array) 相比之下,二维数组可以被看作是由多个相同长度的数组组成的集合。这使得它们特别适合用于处理表格形式的数据或是矩阵运算。 ```python # 构建个简单的二维数组 two_d_array = np.array([[1, 2], [3, 4]]) print(two_d_array) """ 输出: [[1 2] [3 4]] """ # 获取子数组中的某个值 value_from_two_d = two_d_array[1][0] print(value_from_two_d) # 输出: 3 ``` 值得注意的是,在某些情况下也可以通过指定两个坐标来直接获取所需的位置处的内容,而不需要先取出整个行再取列[^5]。 #### Numpy List 和 Native Python Lists 的区别 虽然原生Python列表(lists)也能存储数值型数据,并且可以通过嵌套形成类似于多维数组的形式;但是当涉及到复杂的数学计算时,Numpy所提供的专用函数会更加高效和便捷。此外,由于内部实现了优化算法的缘故,基于Numpy构建起来的数组往往具有更好的性能表现[^4]。 #### 转换方式 如果已经拥有了组原始数据想要快速转换为更高维度的形式,则可以根据具体需求选择合适的方法: - **从维到二维**: 可以使用`reshape()`方法改变形状; - **从低维至高维**: 对于更复杂的情况比如由维变为三维,同样适用上述提到的技术,只是参数设置上有所不同而已[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值