正方形是我们比较熟悉的一个几何图形,它既是特殊的矩形,又是特殊的菱形,因此它具备平行四边形、矩形、菱形所有的性质。它不仅四条边相等,四个角为直角,而且对角线互相垂直平分且相等,它既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点为其对称中心。这些不是本篇要介绍的重点,正方形中有一个模型图,平时解题时也经常能用到,既包含了线段的数量关系,又包含了位置关系,就是蝶形图。

如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.

分析:要证明△ABE与△BCF全等,现在已经具备的条件为:BE=CF,还缺两个条件,可以通过四边形ABCD为正方形得到。由四边形ABCD为正方形可以得到:∠ABE=∠BCF=90°,AB=BC,那么可以通过SAS证明两个三角形全等。
我们要关注的是另外两个结论,通过两个三角形全等,可以得到AE=BF,∠BAE=∠FBC,由∠BAE+∠AEB=90°可以得到∠FBC+∠AEB=90°,进而得到AE⊥BF。
因此,我们得到关于线段AE与BF的结论为:AE=BF且AE⊥BF,我们把这样的图称为蝶形图。蝶形图的应用比较广泛,我们可以看几个具体的例子。

例题1:如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.

分析:根据阴影部分的面积与正方形ABCD的面积之比为2:3,得出阴影部分的面积为6,空白部分的面积为3,由蝶形图可证明△BCE与△CDF全等,全等三角形的面积相等,从而得到空白部分的面积相等,从而可求出△BCG的面积。进而依据△BCG的面积以及勾股定理,得出BG+CG的长,从而得出其周长。

不要想方设法将a、b求出来,这样反而计算更复杂,这道题目还体现了“设而不求”的思想,这种思想在数学解题中也经常遇到,特别是在反比例函数中。

要会在复杂的图形中找到基本模型图,这样解题才会更简单。
例题2:如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC; (2)用等式表示线段BH与AE的数量关系,并证明.

分析:(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,得到结论。


(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得到结论。


证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.


我们在解题时要熟练地运用各种模型图,不仅方便,而且不容易出错。
1651

被折叠的 条评论
为什么被折叠?



