颜色特征怎么在kcf算法中得出高斯响应矩阵的代码_剖析KCF

cf001c3185365559f8c010b9bbc0010d.png

来源自我的博客

前言

核相关滤波算法是单目标跟踪领域一个举足轻重的算法,而kernelized correlation filters(KCF)是其原始形态,下面我以一个小白的角度慢慢揭开其神秘面纱。
(知乎的公式编辑跟mathjax有冲突,部分公式我用图片代替,如果阅读观感不好,请移步原博客)

1.岭回归理论推导

岭回归的理论比较简单,类似于一个单层神经网络加上一个正则项,不同于支撑向量机中的结构风险最小化,岭回归更像是一个逻辑回归,是在保证误差风险最小的情况下尽量使得结构风险小。另外支撑向量机对于高维数据的训练比较快,因为它只取对分类有影响的 support 向量。不过在此处 KCF 的训练样本也不多,所以二者其实都可以,再加上 KCF 中岭回归还引用了对偶空间、傅里叶变换以及核函数,二者的差别就比较小了。 ​ 岭回归的算法形式如下:

其中X 为特征矩阵,w 为权值,y 为样本标签/响应,其中每一项都采用了L2 范数的平方,即矩阵内所有元素的平方和。因此,该优化的关键在于求最优的 w,求解方法则是使用了最直接的拉格朗日乘子法:

68853fb8cb5ef5297ea72467b092bb2d.png

我们假设当前的权重W和输出y都是一维向量,则矩阵的求导公式满足:

不过,由于后面要引入复频域空间,所以我们这里做一些微调:

其中,H 代表共轭转置,即在转置的同时将矩阵内所有元素变为其共轭形式,原因很简单:

2. 循环矩阵

2.1 循环矩阵的引入

由于在目标跟踪中定位目标时如果采用循环移位的方式定位其中心,则需要采用循环的方式逐步判断,这样做太耗时,因此作者引入了循环矩阵。这样做的话,我们的待选目标框不用移动,直接将原图像矩阵循环移位。以一维矩阵为例:

b2f44b7821214139e7c4ee4358a2252f.png

矩阵的每一行相对上一行都向右移动了一位,这里举这个矩阵例子是有用意的,通过该矩阵的n阶形式,我们可以轻松的实现任意矩阵 X 的右移

或者下移
,如:

72ffa3ea986d66941d692d5ddc12020c.png

1e4999c249e2a5d77fca58136a018ac2.png

2.2 循环矩阵的转换

循环矩阵本身是将循环移位的结果整合到了一个矩阵中,虽然可以将循环计算过程优化为矩阵运算,但对于图像这类二维矩阵,则会生成一个很大的循环矩阵,从而耗费内存。这里作者巧妙地引入了离散傅里叶变换(DFT),将循环矩阵X等价为:

其中 F 与离散傅里叶变换中的矩阵有所差异,

就是原矩阵的傅里叶变换,
diag是将矩阵变为对角形式,后面会详细解释。

先以一维矩阵为例来证明:

  • Step1 定义循环矩阵 X 的多项式函数为:

这里先说明一下,单位矩阵 I 其实也是一个循环矩阵,而

其实就是将矩阵
I 所有元素右移 n 个单位。
  • Step2 求矩阵K的特征值和特征向量:

4d2f9c01305b8b3744e642bba99147ef.png

可以发现矩阵 K 的特征矩阵与 DFT 的变换矩阵 W 一致,再利用多项式矩阵的性质可知,循环矩阵 X 的特征值为

, 利用矩阵与其特征值矩阵相似的特点, 可以很容易的证明该性质。
  • Step3 求循环矩阵 X 的特征值和特征向量:

dd0f0b58832227d60269c1d7f139087e.png

可以发现循环矩阵 X 的特征值就是其原矩阵 x 的离散傅里叶变换,对于循环矩阵的特征向量,推导过程如下:

6454cf593549675b23fd6d060de59336.png

在这里我们将

替换为
DFT 变换矩阵 W ,利用矩阵对角化可知:

  • Step4 利用 DFT 变换矩阵 W 的性质修正 X :
    通过观察可知 W 为对称矩阵,另外也可以轻松证明
    ,在这里呢,我们可以对
    W 进行适当地变换:

因此
,则
F 为酉矩阵,同时它也满足
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要实现KCF算法加入HOG和CN特征融合的代码,我们可以按照以下步骤进行: 1. 导入必要的库和模块,如OpenCV,numpy等。 2. 创建一个函数来计算HOG和CN特征。我们可以使用OpenCV的HOGDescriptor和cv2.filter2D函数来实现。 3. 创建一个函数来计算特征响应值。这可以通过在输入图像上使用滤波器来实现,然后将结果与模板进行乘积操作。 4. 创建一个函数来更新目标的位置。这可以通过计算最大响应值的位置,并在下一帧使用KCF算法来预测目标位置。 5. 创建一个主循环来处理视频序列。循环的步骤包括:读取视频帧,对每一帧应用HOG和CN特征融合,计算特征响应,更新目标位置,并在图像上显示结果。 下面是一个简单的伪代码示例: ``` import cv2 import numpy as np def compute_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) cn_filter = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) cn_features = cv2.filter2D(image, -1, cn_filter) return hog_features, cn_features def compute_response(features, template): response = np.fft.ifft2(np.fft.fft2(features) * np.fft.fft2(template)) return np.abs(response) def update_target_position(response, position): max_response = np.max(response) max_position = np.unravel_index(np.argmax(response), response.shape) dx = max_position[1] - response.shape[1] / 2 dy = max_position[0] - response.shape[0] / 2 new_position = (position[0] + dx, position[1] + dy) return new_position # 主循环处理视频序列 cap = cv2.VideoCapture("video.mp4") template = None position = (0, 0) while(cap.isOpened()): ret, frame = cap.read() if not ret: break features = compute_features(frame) if template is None: template = features response = compute_response(features, template) position = update_target_position(response, position) cv2.rectangle(frame, position, (50, 50), (0, 255, 0), 2) cv2.imshow('Tracking', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这只是一个简单的示例代码,实际上还需要更多的优化和调整才能实现更好的跟踪效果。希望这可以帮助你理解如何将KCF算法和HOG、CN特征融合在一起。 ### 回答2: KCF算法是一种目标跟踪算法,将HOG特征和CN特征进行融合可以提高算法的跟踪性能。下面是加入HOG和CN特征融合的KCF算法代码实现: 首先,需要导入所需的库: import cv2 import numpy as np 然后,定义一个函数,用于计算HOG特征和CN特征: def compute_features(image): # 计算HOG特征 hog = cv2.HOGDescriptor() hog_features = hog.compute(image) # 计算CN特征 cn_features = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return hog_features, cn_features 接下来,定义KCF算法的主要函数: def KCF_with_features(image): # 检测目标 roi = cv2.selectROI("Select Object", image) tracker = cv2.TrackerKCF_create() tracker.init(image, roi) while True: success, bbox = tracker.update(image) if success: x, y, w, h = [int(i) for i in bbox] cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) else: cv2.putText(image, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) cv2.imshow("Tracking", image) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() 在主函数,进行图像的读取和功能调用: if __name__ == '__main__': # 读取图像 image = cv2.imread("test.jpg") # 计算特征 hog_features, cn_features = compute_features(image) # 融合特征 features = np.concatenate((hog_features, cn_features), axis=1) # 跟踪目标 KCF_with_features(features) 以上就是加入HOG和CN特征融合的KCF算法的基本代码。通过计算两种特征并将其融合,可以提高算法的跟踪准确性和鲁棒性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值