模糊神经网络代码_图像超分最新记录!南洋理工提出图神经网络嵌入新思路,复原效果惊艳...

编辑:Happy
首发:极市平台
日期:2020-07-02

ab182cefa4f5ce6170b1704937962e9c.png

paper: https://arxiv.org/abs/2006.16673

code: https://github.com/sczhou/IGNN(尚未开源)

【Happy导语】该文可能是首次提出将图神经网络嵌入到图像超分领域中,其实它也是图像块自相似性的一种应用,之前笔者分享过类似的方法(采用卷积方式进行块相似性搜索),而这篇论文则是采用图神经网络搜索块相似性。这种块相似性搜索技术与传统方法中的搜索比较类似,可谓是传统方法与深度学习相结合的又一个进展。对图像复原方向感兴趣的小伙伴可以关注一下这篇论文。

图数据一直就是机器学习领域里最重要的数据结构。与图像数据和文本数据相比,神经网络在图数据上的大规模应用最近几年才大量出现,然而已经呈现出井喷的趋势,在学术界和工业界都产生了巨大的影响。想要系统掌握的话,不仅要知道原理,更要懂得代码细节,以及亲手实战具体项目,了解近年来来一系列模型的发展脉络。想要全面地学习这些知识点的话,可以学习 bienlearn 上的图神经网络专栏。

这个图神经网络专栏由大厂高级算法工程师丁雨山&彬斌主笔,帮助新手以及有一定基础的同学快速入门图神经网络,既包括原理、代码的解读,还有对图网络底层设计思想的理解与项目实操。不管是准备面试、项目实战还是比赛刷分,都可以找到对应的内容。

目前在限时优惠,更详细的内容大家可以点击下方卡片查看

57985760c058896d666ead8d0b92edac.png

Abstract

​ 自然图像中的非局部自相似性时一种非常有效的先验信息,在传统图像处理中被广泛研究与应用,比如非局部均值、BM3D等图像降噪方法以及基于Self-Similarity图像超分和图像去模糊等等。然而该非局部自相似性在深度学习领域却鲜少见诸于研究,现有深度非局部方法仅仅探索了同尺度的相似块,因此图像复原的性能会受限于同尺度信息的有限性,而其他尺度的信息可能包含更多有用的信息。

​ 该文作者对自然图像中的跨尺度块相似块(即相似块可能出现在图像的不同尺度)进行探索,并提出一种新颖的Internal Graph Neural Network进行跨尺度的相似块探索,作者构建了一种跨尺度图用于为LR图像中的块搜k近邻相似块,得到k个HR近邻块并采用自适应集成方式进行信息汇聚。因此,HR信息可以通过k个HR近邻块传递给LR图像块并辅助图像纹理细节复原。

​ 最后,作者通过实验证实了所提方法的SOTA性能。

Method

在这部分内容中,首先介绍一下已有非局部方法的广义形式,然后所提到的跨尺度图汇聚模块,最后介绍所提出的快尺度图像神经网络(IGNN)。

Background

​ 非局部汇聚策略被广泛应用于图像复原领域,比如非局部均值和BM3D采用非局部相似性属性进行图像降噪。在深度学习领域,非局部神经网络与k近邻网络被提出用于探索图像的非局部自相似性。非局部块的汇聚过程可以描述为:

如果我们将特征块以及加权连接视作定点与边的话,上述过程可以视作GNN。之前已有非局部方法进行通尺度相似性探索,但是通尺度相似性对于图像超分的性能提升极为有限。

Cross-Scale Graph Aggregation Module

在已有的非局部深度学习方法中,特征块的大小往往相同。尽管它们在图像降噪方面表现良好,但是它难以获取高分辨率信息,对于超分的性能提升极为有限。考虑到自然图像的块自相似性会跨尺度出现,作者提出一种跨尺度图像神经网络。下图给出了跨尺度图汇聚模块示意图。

81703f123f55e19e93c965ae4e5583f9.png

​ 对于LR中的每个查询块(图中黄色框),从下采样图像中搜索k个最相似块并进行对应的HR块信息汇聚。跨尺度块的连接可以通过图方式进行建模,每个特征块是一个定点,边用来衡量块之间的相似性。下图给出了本文所提出的GraphAgg模块示意图,它包含两个操作:Graph Construction与Patch Aggregation。

07f6031d5721a7e7f757dee0e355134e.png

Graph Construction

​ 首先对低分辨率图像

采用双三次插值进行s倍下采样,得到
,其中下采样比例等于上期望的上采样尺度。因此,所找到的k近邻特征块与期望的HR特征块具有相同尺寸。

​ 为得到k近邻特征块,首先采用VGG19的前三层对

提取嵌入特征
.参考传统非局部方法中的块匹配方法,对于
中的
查询特征块
,首先按照欧式距离寻找k个
近邻块
,然后可以得到k个
大小的来自
特征块
。该过程见上图中的红色线过程,称之为定点映射。

​ 通过上述过程可以完成跨尺度k近邻图

构建,
表示一个包含LR块集合
与HR近邻块集合
的块集合,
表示边集合。为度量顶点(即特征块)之间的相似性,采用
进行度量并用于估计汇聚权值。

:作在

而非
上进行相似块搜索可以减少
被搜索空间;同时仅仅搜索k近邻可以进一步减少计算复杂。

Patch Aggregation

​ 受启发于Edge-Conditioned Convolution(ECN),作者采用如下方式进行相似块汇聚:

其中

表示第r个近邻HR特征块,与此同时,作者还引入
patch2img操作进行输出特征块变化。作者提出采用一种自适应ECN(即
)估计顶点之间的汇聚权值(注:加权权值需要进行归一化哦)。

​ 为充分利用

,作者采用一个
Downsampled-Embedding sub-Network,DEN进行特征嵌入并与
通过concat融合得到
并用于后续网络。

Adaptive Patch Normalization

​ 作者观察到:通过GraphAgg模块得到的k个HR近邻块包含某些低频成分(比如颜色、亮度等)。除了前述提到的自适应加权外,受启发与AdaIN,作者还提出一种自适应块归一化(AdaPN)操作进行近邻块对齐。该过程可以描述为:

通过该对齐操作,可以将紧邻快的低频信息进行迁移同时保持高频纹理信息不变。

Cross-Scale Internal Graph Neural Network

Experiments

​ 为验证所提方法的有效性,作者在DIV2K数据集上进行了训练,输入块大小为

,同时采用随机镜像、旋转等增广。优化器为Adam,初始学习率为0.0001,每200000迭代折半,合计训练800000迭代。损失函数为
。在GraphAgg模块中,k=5,搜索窗口设置为30.注:GraphAgg是一种“即插即用”的模块,它可以轻易嵌入到其他超分网络中。

​ 下表给出了所提方法与其他SOTA方法的性能对比,取得了目前最佳的PSNR指标。

138c63188ff72a094e481c6cc3d5abfd.png

81bcb9a4f3d45e76191df43251a44e64.png

​ 此外,作者还进行了一些消融实验分析。下图对比了GraphAgg与常规非局部集成思路的对比。可以看到:简单的平均方式会产生假性纹理,而所提方法则有效避免了该问题。

5d22e91b605090856b292e830e2379b6.png

​ 下面两个表分别对比了(1)GraphAgg与其他非局部方法的性能;(2) GraphAgg插入不同位置的性能对比。

45ab2352323b297fb66bdca4f57a7da3.png

​ 下面两个表分别对比了(1)不同搜索方位下的性能对比;(2)不同近邻数的性能对比。可以看到:搜索范围为30,近邻为5即可取得非常好的性能,进一步提升无明显提升。

b3c99e168e5798354e486073da3dc17c.png

​ 最后,作者对比AdaPN与ECN的作用与性能对比,见下表。

4887a1b4be6d1b65c3ea47c07f053120.png

​ 最后的最后,多附上几个效果图,没办法,论文效果太赞了。

0efcb59721910a4871f66e93704e83e8.png

be9c75f16aa048b9e73ef6acaff039a6.png

Conclusion

​ 虽然该文并非首个将图像块跨尺度自相似性引入到图像超分领域,但其创新性的采用图方式进行最近邻相似块的搜索,同时进一步将图像超分的指标刷到的新的高度。

​ 目前作者尚未开源代码,甚至期待开源并尝试一番。笔者最近也是在尝试非局部均值、双边滤波思想与图像超分的融合之道,但尚未取得这么好的效果。但这篇论文提供了一个非常好的方案:采用图神经网络嵌入图像块自相似性,好像看到了自己方案的前进之路。

推荐阅读

  1. CVPR2020 | 高低频分离超分方案
  2. 思想的碰撞:非局部均值偶遇深度学习
  3. 思维的碰撞|稀疏表达偶遇深度学习
  4. 超越RCAN,图像超分又一峰:RFANet
  5. 显著提升真实数据超分性能,南大&腾讯开源图像超分新方案,获NTIRE2020双赛道冠军
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值