1、理论
①、逻辑回归 是分类问题,一个二分分类(分类结果只有2个)
②、逻辑回归 的标签是 “是、否(1,0)”
③、机器学习里的分类问题 会形成一个决策面,根据决策面判断“是、否(1,0)”
④、机器学习里的分类问题 判断准确性的指标是用 正确率衡量: 正确率=正确分类个数/数据总数。 这里由于数据较少,用R²来评估准确率
⑤、逻辑函数
逻辑函数里的 z 系数是 线性回归函数,所以我们称呼它为逻辑回归
逻辑函数 使用:
决策面(逻辑函数y>=0.5,我们认为预测值为1; 有y<0.5,我们认为预测值为0)
⑥、分类与回归的注意点
2、代码示例
现有1组”学习时间“与”通过考试“关系的有序字典所构成的examDict,用逻