python 逻辑回归_机器学习之逻辑回归(python)

本文介绍了逻辑回归的基础理论,包括其在二分类问题中的应用、决策面、正确率评估以及逻辑函数的原理。同时,通过Python代码示例展示了如何构建逻辑回归模型,对学习时间和考试通过的关系进行预测,并利用R²评估模型准确率,最后解释了概率预测的逻辑。
摘要由CSDN通过智能技术生成

1、理论

①、逻辑回归 是分类问题,一个二分分类(分类结果只有2个)

②、逻辑回归 的标签是 “是、否(1,0)”

③、机器学习里的分类问题 会形成一个决策面,根据决策面判断“是、否(1,0)”

④、机器学习里的分类问题 判断准确性的指标是用 正确率衡量: 正确率=正确分类个数/数据总数。 这里由于数据较少,用R²来评估准确率

⑤、逻辑函数

2622533ff8d41994945b20cf0756d56a.png

逻辑函数里的 z 系数是 线性回归函数,所以我们称呼它为逻辑回归

dcd15b4c18ef8dfec357762fee0c7f53.png

逻辑函数 使用:

决策面(逻辑函数y>=0.5,我们认为预测值为1; 有y<0.5,我们认为预测值为0)

⑥、分类与回归的注意点

1b716a479701c5d09832aff18fd1c674.png

2565349a354241eadc12e842c5478076.png

2、代码示例

现有1组”学习时间“与”通过考试“关系的有序字典所构成的examDict,用逻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值