python期权定价公式_一揽子欧洲期权蒙特卡洛定价(python)(一)

本文介绍了欧洲期权定价原理,特别是针对一揽子期权的蒙特卡洛方法。通过蒙特卡洛模拟,即使在多维情况下也能有效定价。文章详细阐述了蒙特卡洛算法的伪代码,并提供了Python实现示例,展示了如何计算一揽子欧洲看涨期权的价格。
摘要由CSDN通过智能技术生成

欧洲期权定价原理

接着上文资产价格的内容,先解释一下股票价格和期权收益的数学原理。以一个股票为标的的欧洲看涨期权为例。

以一个资产或股票为标的的欧洲期权,是一揽子欧洲期权的特殊情况。我们引进股票价格动态过程 Black-Scholes 模型。这个模型通过一个随机微分方程(SDE)描述了股票价格的变动,即解释为将股票价格变动的百分比率dS/S 建模为一个布朗运动的增量。

这个随机微分方程的解就是资产(underlying asset)在T时刻的价格,通过公式可以看到这个价格与资产波动性质(volatilaty),成熟时间(maturity time)以及r (drift)有关。

上文已经给出T时刻股票价格是符合几何布朗分布,或者我们可以说,股票价格符合对数正态分布。对于一个看涨期权,将他在执行时刻(maturity time)的收益乘以一个贴现因子(常数)就是这个期权的价格。所以期权期望价格为:

这个期望是否可以直接求得呢?不难理解,它是S(T)在对数正态分布上的积分。前人已经给出解析解,即看涨期权的 Black-Scholes 公式。换而言之,我们不需要任何算法,直接把数据带入 Black-Scholes 公式就可以计算出欧洲看涨期权价格。

许多人会有疑问,那么为什么我们还要使用费时费力的蒙特卡洛方法呢?因为在多维的情况下,我们并不知道S(T)服从怎样的联合分布,所以没有办法进行积分运算。此时我们只能采用蒙特卡洛方法。

蒙特卡洛方法对一揽子期权定价的优越性

我们已经知道了股票价格的运动路径是遵循几何布朗运动,那么蒙特卡洛方法就是从可能路径的总体空间进行抽样,然后用我们得到的样本的期望来估计总体。值得注意的是,维数很多的情况下,这个路径的总体空间会趋近无限大。但是,采用蒙特卡洛采样的收敛速度与维数没有关系,只与采样的步数有关。因此,无论是几维,即无论这一揽子期权由多少个标的资产组成,蒙特卡洛方法的收敛速度为始终O(1/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值