Pandas2.2 DataFrame
Binary operator functions
方法 | 描述 |
---|---|
DataFrame.add(other) | 用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作 |
DataFrame.add(other[, axis, level, fill_value]) | 用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作 |
DataFrame.sub(other[, axis, level, fill_value]) | 用于执行逐元素的减法操作 |
DataFrame.mul(other[, axis, level, fill_value]) | 用于执行逐元素的乘法操作 |
DataFrame.div(other[, axis, level, fill_value]) | 用于执行逐元素的除法操作 |
DataFrame.truediv(other[, axis, level, …]) | 用于执行逐元素的真除法操作 |
DataFrame.floordiv(other[, axis, level, …]) | 用于执行逐元素的地板除法操作 |
DataFrame.mod(other[, axis, level, fill_value]) | 用于执行逐元素的取模操作 |
DataFrame.pow(other[, axis, level, fill_value]) | 用于对 DataFrame 中的元素进行幂运算 |
DataFrame.dot(other) | 用于计算两个 DataFrame(或 DataFrame 与 Series/数组)之间的**矩阵点积(矩阵乘法)**的方法 |
DataFrame.radd(other[, axis, level, fill_value]) | 用于执行反向加法运算 |
DataFrame.rsub(other[, axis, level, fill_value]) | 用于执行反向减法运算 |
DataFrame.rmul(other[, axis, level, fill_value]) | 用于执行反向乘法运算 |
DataFrame.rdiv(other[, axis, level, fill_value]) | 用于执行反向除法运算 |
DataFrame.rtruediv(other[, axis, level, …]) | 用于执行反向真除法运算 |
DataFrame.rfloordiv(other[, axis, level, …]) | 用于执行反向整除运算(地板除法) |
DataFrame.rmod(other[, axis, level, fill_value]) | 用于按元素计算反向模运算(即 other % DataFrame ) |
DataFrame.rpow(other[, axis, level, fill_value]) | 用于按元素计算反向幂运算(即 other ** DataFrame ) |
DataFrame.lt(other[, axis, level]) | 用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于后者 |
DataFrame.gt(other[, axis, level]) | 用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否大于后者 |
DataFrame.le(other[, axis, level]) | 用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于或等于后者 |
pandas.DataFrame.le()
pandas.DataFrame.le(other[, axis, level])
是 Pandas 中的一个二进制运算函数,用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于或等于后者。这个方法返回一个布尔值的 DataFrame。
参数说明:
other
: 另一个 DataFrame 或标量,用于进行比较。axis
: {0 or ‘index’, 1 or ‘columns’}. 默认为 0。表示沿着哪个轴进行操作。level
: 如果操作对象是 MultiIndex,则指定沿着哪个级别进行操作。
示例
假设我们有两个 DataFrame:
import pandas as pd
df1 = pd.DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6]
})
df2 = pd.DataFrame({
'A': [2, 2, 2],
'B': [3, 5, 7]
})
示例 1: 使用另一个 DataFrame
result = df1.le(df2)
print(result)
输出结果:
A B
0 True False
1 True True
2 False True
示例 2: 使用标量
result = df1.le(2)
print(result)
输出结果:
A B
0 True False
1 True True
2 False False
解释
- 在示例 1 中,
df1.le(df2)
比较df1
中的每个元素是否小于或等于df2
中对应位置的元素,返回一个布尔值的 DataFrame。 - 在示例 2 中,
df1.le(2)
比较df1
中的每个元素是否小于或等于 2,返回一个布尔值的 DataFrame。
这个函数在需要进行元素级别的比较时非常有用,特别是在数据筛选和条件判断中。