【Pandas】pandas DataFrame le

Pandas2.2 DataFrame

Binary operator functions

方法描述
DataFrame.add(other)用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.add(other[, axis, level, fill_value])用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.sub(other[, axis, level, fill_value])用于执行逐元素的减法操作
DataFrame.mul(other[, axis, level, fill_value])用于执行逐元素的乘法操作
DataFrame.div(other[, axis, level, fill_value])用于执行逐元素的除法操作
DataFrame.truediv(other[, axis, level, …])用于执行逐元素的真除法操作
DataFrame.floordiv(other[, axis, level, …])用于执行逐元素的地板除法操作
DataFrame.mod(other[, axis, level, fill_value])用于执行逐元素的取模操作
DataFrame.pow(other[, axis, level, fill_value])用于对 DataFrame 中的元素进行幂运算
DataFrame.dot(other)用于计算两个 DataFrame(或 DataFrame 与 Series/数组)之间的**矩阵点积(矩阵乘法)**的方法
DataFrame.radd(other[, axis, level, fill_value])用于执行反向加法运算
DataFrame.rsub(other[, axis, level, fill_value])用于执行反向减法运算
DataFrame.rmul(other[, axis, level, fill_value])用于执行反向乘法运算
DataFrame.rdiv(other[, axis, level, fill_value])用于执行反向除法运算
DataFrame.rtruediv(other[, axis, level, …])用于执行反向真除法运算
DataFrame.rfloordiv(other[, axis, level, …])用于执行反向整除运算(地板除法)
DataFrame.rmod(other[, axis, level, fill_value])用于按元素计算反向模运算(即 other % DataFrame
DataFrame.rpow(other[, axis, level, fill_value])用于按元素计算反向幂运算(即 other ** DataFrame
DataFrame.lt(other[, axis, level])用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于后者
DataFrame.gt(other[, axis, level])用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否大于后者
DataFrame.le(other[, axis, level])用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于或等于后者

pandas.DataFrame.le()

pandas.DataFrame.le(other[, axis, level]) 是 Pandas 中的一个二进制运算函数,用于按元素比较两个 DataFrame 或一个 DataFrame 和一个标量,判断前者是否小于或等于后者。这个方法返回一个布尔值的 DataFrame。

参数说明:
  • other: 另一个 DataFrame 或标量,用于进行比较。
  • axis: {0 or ‘index’, 1 or ‘columns’}. 默认为 0。表示沿着哪个轴进行操作。
  • level: 如果操作对象是 MultiIndex,则指定沿着哪个级别进行操作。
示例

假设我们有两个 DataFrame:

import pandas as pd

df1 = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

df2 = pd.DataFrame({
    'A': [2, 2, 2],
    'B': [3, 5, 7]
})
示例 1: 使用另一个 DataFrame
result = df1.le(df2)
print(result)

输出结果:

       A      B
0   True   False
1   True    True
2  False    True
示例 2: 使用标量
result = df1.le(2)
print(result)

输出结果:

       A      B
0   True  False
1   True   True
2  False  False
解释
  • 在示例 1 中,df1.le(df2) 比较 df1 中的每个元素是否小于或等于 df2 中对应位置的元素,返回一个布尔值的 DataFrame。
  • 在示例 2 中,df1.le(2) 比较 df1 中的每个元素是否小于或等于 2,返回一个布尔值的 DataFrame。

这个函数在需要进行元素级别的比较时非常有用,特别是在数据筛选和条件判断中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值