参数 相等_ANSYS DesignXplorer 参数化优化在水冷板流道设计中的应用

本文介绍了如何利用ANSYS DesignXplorer进行水冷板流道的参数化优化设计,以实现流量均匀分布。通过参数化几何建模、网格划分、求解和优化,最终找到优化方案,显著提高了流量的均匀性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安世亚太官方订阅号(搜索:peraglobal)将为您提供CAE仿真、工业先进设计与增材制造领域最新的行业资讯、专业的课程培训、权威的技术资料、丰富的案例分析

2018年国内新能源汽车销量超过百万辆,同比增长60%。一方面依托于中国庞大的市场和政策扶持力度,整个产业链迎来了大爆发。但另一方面,随着补贴撤退,热度下降的同时之前被暂时掩盖的一些技术问题重新被关注起来。解决这些问题就可能在这个行业走得更远、走得更好。

新能源汽车动力电池热管理关乎到电池组性能和寿命,是每个相关企业都重点关注的问题。电池在使用过程中除了将电能转化为机械能,还有相当一部分电能以热的形式消耗掉,这是无法避免的。因此电池pack在设计时需要考虑到散热需求,以维持锂离子电池在合适的工作温度范围内。散热按散热方式可分为被动散热和主动散热,按散热介质可分为风冷和液冷。随着电池能量密度越来越大,风冷很难满足散热要求,因此pack水冷设计普遍被采用。

水冷板的设计主要由流速、进出口位置、流道形式和结构、加工工艺等因素确定。一般来说,水冷板设计除了要满足散热需求,还需要考虑冷板均温性和流阻。要实现冷板均温性,各流道流量均匀性是必要条件。本文利用ANSYS DesignXplorer(DX)软件进行冷板流道结构尺寸的自动优化,以实现流量在各个流道的均匀分布。

整个分析、优化流程如下图,用到的软件包括参数化建模模块ANSYS DesignModeler(DM)、网格划分模块ANSYS Meshing(AM)、求解模块ANSYS Fluent和优化模块DX,其中优化模块包含试验设计(DOE)、响应面拟合(Response Surface)和优化(Optimization)。

17b96760c5434f5c0e776e380632a838.png

01 参数化几何建模

DM里建立如下U型流道的几何模型,代表冷板局部结构,将导流板到两边的距离设置为可变参数。初始条件下,每个导流板连同最终中间隔板的到边距离全部相等。另外切割出流量监测面,以便后续优化时使用。

0b04495783963587aaae9b6388c23a09.png

02 网格划分

几何结构比较简单,用ANSYS通用网格工具AM即可,设置全局尺寸,注意局部壁面添加inflation。

613728b17b499e02de5d81d9fa77fea6.png

03 求解

求解设置比较简单,打开Fluent,介质切换为水(water-liquid),设置进出口边界条件,采用速度入口+压力出口的配置,入口速度1m/s(假设值),其余均保持默认。

请注意,在Fluent要输出如下7个参数,分别是总流量和每个通道内的流量。

7247f81bd67b68f1f4908277dcbf2fa4.png

e7b2decad8c1df4ae297ca130a20a20c.png

efb7d074cc22fb6c7b8ef4e464b82244.png

最终双击Workbench界面的Parameter Set就可以看到所有的输入、输出参数总表。在这个表里另外再增加一个输出参数P21,定义为

7292a824979d6f30ec5fdc675471fa43.png

,代表各个通道流量偏离平均流量的程度。若要实现流量均匀性,则该变量的值要尽可能小。

145e752b479769bac803c12670555fbf.png

计算结果显示,由于初始设计的各个导流板长度相等,流量在各个流道的分配很不均匀,P21达到0.891 kg2/s2。

03dd27562fce172f0b95dea0a3afb2f5.png

deac6a4b12eca2859d8945fb041b68f7.png

04优化

4.1 试验设计(DOE)

进入优化模块,首先要设计试验,根据输入参数的数据采集设计参数样本计算每个样本的响应结果。试验设计方法有中心符合设计法、优化空间填充设计法、用户自定义设计等。本次选用Optimal Space-Filling Design方法,采样点的布置更均匀。DX自动根据参数数量设计样本点,本次共148个样本点。点击Workbench的按钮,依次计算这些样本点。此处根据模型复杂程度、并行数量和计算机配置,计算时间可能会持续几个小时以上。最终会得到这148个样本点的各流道流量及P21这个值。为下一步得到响应面提供分析数据。

3ef2a9e88ce69dab0fc500c7b7156d08.png

4.2 响应面拟合(Response Surface)

响应面拟合采用神经网络法(Neural Network),适合用于高度非线性的响应、输入参数和设计点多的情况。经过短时间的拟合计算,即可得到各个输入参数对输出参数的响应面(2D和3D图像表示)、灵敏度图(各个输入参数对每一个输出参数的相对影响程度)和蛛状图(所有输出参数在输入参数在当前值的响应)。

9d80d9ff392a253f8b726936dd461ec0.png

dfe327b24ceddf0654c890995f7a581a.png

36457897a4bb22c989b7064a507b60fe.png

cff710758d6b8c94702cbe63942ff2a0.png

4.3 优化(Optimization)

进入优化阶段,DX提供了六种优化方法,本次采用多目标遗传算法(MOGA)。演示流程,为了简化目的,本次仅设置目标为P21这个参数值最小。如果有压降要求,则需要在Fluent设置时添加进出口压降的输出参数,然后在下图界面里添加这个目标并设置其约束。完成目标和约束的设置,点击

6b6b731c87430b3f2cffc8d74d1be735.png

,经过一段时间(数分钟)自动寻优,DX根据响应面结果返回三个候选方案。这三个方案的准确结果还需要代回Fluent里详细计算,这一过程称为验证(Verified)。可以在设置优化方法是勾选上“Verify Candidate Points”或者后续手动操作。

d13539cdc6e8b0ede69b68b9755663b1.png

完成这一步,整个优化过程基本上就完成了。接下来只需要把最佳方案作为设计点插入Parameter Set表中(如下图)即可。

df2faa2b4841ffeaea75a856cbc589a9.png

优化过后的导流板到边距离及速度分布云图如下图,与初始设计相比,各个流道的流量均匀性已经大为改善,代表均匀性偏差的P21这个参数从0.891降到0.077。

6ab3d325768126a2c93e6432d92f4c0a.png
改进设计

3f45d815286324988a23f87c7220edd3.png
初始设计

bf4a25bef143e0a22a0348c76d98f128.png
优化前后结果统计对比

上面即是利用ANSYS DesignXplorer对冷板结构进行参数化的全流程,通过DX自动寻优为我们找到了更优选的方案。

本文演示的是动力电池水冷板结构的优化,其实这一过程也可以用在燃料电池流道均匀性优化等其他涉及几何结构和工艺参数优化的场景。不同于传统的经验设计存在一定盲目性,利用软件进行优化设计既可以弥补经验的欠缺,也使我们的设计更有说服力和效率。

如果您有其他的问题请关注安世亚太官方微信公众号:Peraglobal进入安世亚太官方微信点击右下角提问区进行提问

或拨打客服电话:400-6600-388,安世亚太竭诚为您服务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值