巧用正午太阳高度角
慈利四中地理组 周德华
正午太阳高度角计算公式是用来计算在某时、某地正午时太阳高度的公式。在高三地理复习中,此类问题经常出现,而且许多资料书上其公式的写法也不一样,解释也有差别,有些同学往往不知所从。其实,万变不离其宗。首先要能够理解该公式,知其然;能知道该公式的来源,知其所以然,那么相关问题的解答就会很简单。以下是我从教以来对该公式的分析和总结,希望对高考学子们有所帮助,也希望各位同行能提出积极的意见共勉。
一、什么是正午太阳高度(H)
太阳光线与地平面的交角叫做太阳高度角,简称太阳高度。太阳位于天顶时,它的高度为90°,称为直射;太阳高度小于90°,而大于0°时为斜射;太阳位于地平线时,它的高度为0°。在一日内,太阳位于上中天(即当地地方时为12时)时,其高度达到最大值,称为“正午太阳高度”(H)。
二、正午太阳高度的计算
公式:H=90º-|φ±δ|
(H为正午太阳高度,φ为当地纬度,δ为直射点的纬度,φ、δ永远取正值)
“±”取法:同减异加(即φ、δ在同半球时两者相减,在不同半球时两者相加)
如以慈利(29°N)为例,求出二分二至日时的正午太阳高度。
解答:夏至日,δ为23.5°N,与慈利同在北半球,则
H1=90º-|29°-23.5°|=84.5°
冬至日,δ为23.5°S,与慈利在不同半球,则
H2=90º-|29°+23.5°|=37.5°
春秋分日,δ为0°,直射赤道,则正午太阳高度即为90°减去当地的纬度,
H3=90º-29°=61°
由于公式中遵循的是同减异加,因此对于那些不要定量计算只要定性判断的题目无需通过取点计算进行比较,只需在太阳直射点的回归运动图上观察太阳直射点和某地所在纬线的直线距离的长度变化:直线距离越长正午太阳高度越小,直线距离越短正午太阳高度越大;两者相交,距离为零,此日的正午太阳高度是当地的全年最大值,为直射(90°)。
图3
根据这样的法则得出结论,方便快捷。
下面结合题目作进一步解释。
如慈利(29°N)二分二至对应的直线距离分别是AA′(春分)、BB′(夏至)、CC′(秋分)、DD′(冬至),它们长度的对比关系是BB′<AA′=CC′<DD′,所以慈利的正午太阳高度最大出现在夏至,最小出现在冬至,春秋分时慈利的正午太阳高度相等。
而广州(23°N)正午太阳高度最大出现在太阳直射23°N的日期(距离为零),为90°;在图中DD′的距离最长,因此广州最小的正午太阳高度出现在冬至。
三、正午太阳高度在日常生活中的应用
1、太阳能热水器的安装倾角
① 请问慈利(29°N)在夏至日太阳能热水器集热板与地面的倾角是几度?
② 请问要保证太阳能热水器在全年都有较好的集热效果,太阳能热水器与地面的倾角应保持在几度之间?
解答:当正午太阳高度与集热板相垂直时,集热效果最好,结合太阳能热水器的安装图,可以得出太阳能热水器集热板与地面的倾角是(见下图):
倾角a=90°-∠H=90°-正午太阳高度 =90°-〔90º-|φ±δ|〕
=|φ±δ|
第①题:夏至日倾角a=|29°-23.5°|=5.5°
第②题:要保证全年都有较好的光照,倾角须在最小倾角和最大倾角之间,最小倾角为夏至时——5.5°,最大倾角为冬至时——52.5°,所以倾角应保持在5.5°和52.5°之间。
2. 楼间距的推算
例:在新规划的慈利四中校址——蒋家坪,开发商欲建两栋南北向、高为h的教学楼,为保证新建楼底楼全年都能照射到正午太阳光,两楼间的最短距离是多少?
解答:要使新楼底楼全年都能照射到正午太阳光,必须保证正午楼影最长时正好与底楼相切。对于北半球来说,正午物体影子最长出现在冬至日,所以慈利冬至日时前楼正午的楼影长就是所求的最短楼间距。
① 求算冬至日正午太阳高度:H冬至=90°-|29°+23.5°|=37.5°
② 利用三角函数求算冬至日的正午楼影:L正午楼影=h·ctg37.5°
③最小的楼间距即为h·ctg37.5°