
个人声明
本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。
本书信息
书名:Linear Algebra Done Right (3rd Edition)
语言:英文
作者:Sheldon Axler
ISSN: 0172--6056(纸质);2197-5604(电子)
ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)
出版社:Springer
出版年份:2015
参考链接
电子PDF链接(英文):Linear Algebra Done Right
习题答案链接(英文):Solution Manual
本书目录(译)
注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。
(链接更新中)
一、向量空间——
二、有限维向量空间——生成空间与线性无关;基;维数
三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性
四、多项式
五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵
六、内积空间——内积与范数;标准正交基;正交补与最小化问题
七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解
八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型
九、实向量空间上的算子——复化;实内积空间上的算子
十、迹与行列式——迹;行列式
笔记附录
附录一、一些基础离散数学与抽象代数概念笔记
附录二、附录一中的定理证明
3.B 零空间与值域(Null Spaces and Ranges)
关键词:零空间、单射、值域、满射、线性映射基本定理、线性方程组
零空间与单射(Null Space and Injectivity)
在上一节3.A例3.4中提及了齐次线性方程组的解集——解空间。我们将概念广义化从线性映射角度来理解就引申出概念——零空间
摘录译文(页59)
3.12 定义 零空间、![]()
对于,
零空间,表示为的
,是由被
映射至
的向量组成的
的子集:
。
3.13 例 零空间
(a) 若是从
至
的零映射,换句话说,若
对于每个
,则
。
(b) 设被定义为
。则
。
的基是
。
(c) 设是被定义为
的微分映射。仅有的导数等于零函数的函数是常函数。因此
的零空间等于常函数的集合。
(d) 设是被定义为
的乘以
映射。仅有的对于所有的
,使得
的多项式
是
多项式。因此
。
(e) 设是被定义为
的后移。显然
等于
当且仅当
全为
。因此此例中我们有
。
这里正式定义了零空间——由映射至
摘录译文(页60)
3.14 零空间是子空间
设。则
是
的子空间。
证
因为是线性映射,所以我们知道
(定理3.11)。因此
。
设。则
。
因此,即
在加法下封闭。
设且
。则
。
因此,即
在数乘下封闭。
我们已证包含
且在加法与数乘下封闭。因此
是
的子空间(定理1.34)。
这里证明了零空间是一个子空间。对于一个线性方程组,齐次线性方程组的解集又称作解空间——因为所有未知元为零是齐次线性方程组的解,任意两个齐次线性方程组的解之和依然是该齐次线性方程组的解,同理任意一个齐次线性方程组的解乘以一个常数依然是该齐次线性方程组的解。由于线性映射也是函数,函数中的单射概念可以用于讨论线性映射而且线性映射的零空间性质与单射性质有着很大的关联。
摘录译文(页60-61)
3.15 定义 单射
函数单射函数若称作
推出
。
3.16 单射等价于零空间等于![]()
令。则
是单射函数当且仅当
。
证
首先设是单射函数。我们要证
。我们已知
(定理3.11)。为证另一方向的包含关系,设
。则
。因为
是单射函数,所以由上述等式推出
。因此正如我们所希望的那样我们可以得出
。
为证另一方向的蕴含关系,现在设。我们要证
是单射函数。为此,设
且
。则
。因此
属于
,其中
。所以
推出
,即
是单射函数,正如我们所希望的那样。
这里定义了单射函数且告诉我们判断一个线性映射是否为单射函数的简易条件——零空间等于
具体到本证明来说,先设前提:
值域与满射(Range and Surjectivity)
摘录译文(页61)
3.17 定义 值域
对于从至
的函数
,
值域是由对于某些的
具有形式
的向量组成的
的子集:
。
3.18 例 值域
(a) 若是从
至
的零映射,换句话说,若
对于每个
,则
。
(b) 设被定义为
,则
。
的基是
。
(c) 设是被定义为
的微分映射。因为对于每个多项式
,存在多项式
使得
,所以
的值域是
。
这里定义了值域——对于所有满足存在
摘录译文(页62)
3.19 值域是子空间
若,则
是
的子空间。
证
设。则
(定理3.11)推出
。
若,则存在
使得
且
。因此
。
所以。因此
在加法下封闭。
若且
,则存在
使得
。因此
。
所以。因此
在数乘下封闭。
我们已证包含
且在加法与数乘下封闭。因此
是
的子空间(定理1.34)。
这里证明了值域是一个子空间。对于一个线性方程组,若该方程组是齐次的,则必定存在解,即存在解
摘录译文(页62)
3.20 定义 满射
函数满射函数若该函数的值域等于称作
。
3.21 例
定义为的微分映射
不是满射函数是因为多项式
不在
的值域中。然而,定义为
的微分映射
是满射函数是因为该映射的值域等于
,其中
是被
映射至的向量空间。
这里定义了满射函数——值域等于被映射的向量空间本身的函数。线性映射是否为满射取决于被映射的向量空间(正如例3.21所展示的那样)。
线性映射基本定理(Fundamental Theorem of Linear Maps)
摘录译文(页63)
3.22 线性映射基本定理
设是有限维向量空间且
。则
是有限维向量空间且
。
证
令是
的基;因此
。可以把线性无关列表
扩充成
的基
(定理2.33)。因此
。为完成证明,我们只需证明
是有限维向量空间且
。我们将通过证明
是
的基来完成证明。
令。因为
生成
,我们可以把
写成
![]()
其中所有的与
都属于
。等式两边施加
,我们得到
![]()
其中形如的项消失了是因为每个
属于
。最后一个等式意味着
生成
。特别地,
是有限维向量空间。
为证线性无关,设
且
。
则。
所以。
因为生成
,我们可以把
写成
,
其中所有的属于
。此等式意味着所有的
(与所有的
)都为
(因为
线性无关)。因此
线性无关,所以正如我们所希望的那样
是
的基。
此定理告诉我们线性映射的定义域的维数等于零空间的维数与值域的维数之和。形象地理解该证明的话,首先零空间的基
PS:读者若学习本书感到对这些抽象概念理解吃力,3Blue1Brown视频可以作为辅助资料。
对于一个线性方程组,定义域的维数指的是未知元的个数
该证明是关于多个线性空间之间的维数关系公式的证明。维数公式的证明可以通过构造对应的线性空间的基然后找出不同的基的长度关系来得证(根据维数的定义2.36)。特别地,当一个线性空间是另一个线性空间的子空间时,我们可以先构造子空间的基然后根据基的扩充定理(定理2.33)构造出包含子空间的线性空间的基。并且在证明过程中互为充要条件的命题
具体到本证明,我们要证关于线性空间
而一个向量组满足基的条件是线性无关且生成对应的线性空间,具体来说需要证明
摘录译文(页64)
3.23 映射至更小维度空间的线性映射不是单射
设与
是有限维向量空间使得
。则没有从
至
的线性映射是单射。
证
令。则
![]()
其中等式来源于线性映射基本定理(定理3.22)。不等式声明,意味着
包含除
以外的向量。因此
不是单射(定理3.16)。
3.24 映射至更大维度空间的线性映射不是满射
设与
是有限维向量空间使得
。则没有从
至
的线性映射是满射。
证
令。则
![]()
其中等式来源于线性映射基本定理(定理3.22)。不等式声明,意味着
不可能等于
。因此
不是满射。
这里两个证明告诉我们若
接下来我们将利用上述两个结论讨论线性方程组的一些性质。
摘录译文(页65)
3.25 例
从线性映射角度重述问题:齐次线性方程组是否有非零解?
解
固定正整数与
且令
对于
与
。考虑齐次线性方程组
![]()
显然是上述方程组的一个解。这里问题在于任何其他解是否存在。
定义为
。
方程(这里
是
中的加法单位元,即全为
组成的长度为
的列表)与上述齐次线性方程组一样。
因此我们要知道是否严格大于
。换句话说,我们可以重述关于非零解的问题如下(定理3.16):在什么情况下保证
不是单射?
3.26 齐次线性方程组
变量个数多于方程个数的齐次线性方程组有非零解。
证
使用上例中的记号与结论。因此是从
至
的线性映射且我们有
个变量
的
个齐次线性方程组。从定理3.23我们看出
不是单射若
。
上述结论的例子:五个变量的四个齐次线性方程组有非零解。
上述结论告诉我们未知元个数多于方程个数的齐次线性方程组存在非零解。因此有推论——未知元个数多于方程个数的线性方程组存在多个解,读者可以自行验证。
摘录译文(页66)
3.27 例
考虑问题:对于某些常数项的选择非齐次线性方程组是否无解?
从线性映射角度重述此问题。
解
固定正整数与
且令
对于
与
。对于
,考虑线性方程组
3.28![]()
这里问题在于是否有一些的选择使得上述方程组无解存在。
定义为
。
方程与方程组3.28一样。因此我们要知道是否
。所以我们可以重述关于对于一些
的选择没有解的问题如下:在什么情况下保证
不是满射?
3.29 非齐次线性方程组
方程个数多于变量个数的非齐次线性方程组对于一些常数项的选择无解。
证
使用上例中的记号与结论。因此是从
至
的线性映射且我们有
个变量
的
个方程组。从定理3.24我们看出
不是满射若
。
上述结论的例子:四个变量的五个非齐次线性方程组对于一些常数项的选择无解。
上述结论告诉我们方程个数多于未知元个数的非齐次线性方程组对于一些常数项的选择无解。
习题3.B
摘录译文(页67)
习题2:设是向量空间且
使得
。证明
。
解
对于每个
因此
摘录译文(页67)
习题4:证明不是
的子空间。
解
设
显然
可以看出
摘录译文(页67)
习题7:设与
是满足
的有限维向量空间。证明
不是
的子空间。
解
设
显然
显然
等式两边同时施加
由于
摘录译文(页68)
习题12:设是有限维向量空间且
。证明存在
的子空间
使得
且
。
解
由于
摘录译文(页68)
习题13:设是从
至
的线性映射使得
。证明
是满射。
解
根据
因为
摘录译文(页68)
习题18:设与
都是有限维向量空间。证明存在从
至
的满射线性映射当且仅当
。
解
其中一个方向的命题已证明(定理3.24):
该命题等价于:存在从
现在只需证明:
设
摘录译文(页69)
习题23:设与
是有限维向量空间且
且
。证明
。
解
对于每个
设
摘录译文(页69)
习题24:设是有限维向量空间且
。证明
当且仅当存在
使得
。
解
令
其中
因此
所以
即
摘录译文(页69)
习题28:设且
是
的基。证明存在
使得
对于每个
。
解
因为
对于所有的
因此
对于所有的
因此
上一节:线性映射的向量空间
下一节:矩阵