线性代数第九版pdf英文_《Linear Algebra Done Right》线性代数复习及部分习题解答(3.B)...

本文是自学《Linear Algebra Done Right》第三版的笔记,聚焦3.B章节,讨论零空间(Null Space)与值域(Range)的概念,包括它们的定义、性质和与线性映射的关系。通过零空间理解线性映射的单射性,通过值域理解其满射性,并介绍线性映射基本定理,阐述线性方程组的解与维数之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f33dddadae34e79c25a94f236936bc53.png

个人声明

本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。

本书信息

书名:Linear Algebra Done Right (3rd Edition)

语言:英文

作者:Sheldon Axler

ISSN: 0172--6056(纸质);2197-5604(电子)

ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)

出版社:Springer

出版年份:2015

参考链接

电子PDF链接(英文):Linear Algebra Done Right

习题答案链接(英文):Solution Manual

本书目录(译)

注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。

(链接更新中)

一、向量空间——

;向量空间的定义;子空间

二、有限维向量空间——生成空间与线性无关;基;维数

三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性

四、多项式

五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵

六、内积空间——内积与范数;标准正交基;正交补与最小化问题

七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解

八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型

九、实向量空间上的算子——复化;实内积空间上的算子

十、迹与行列式——迹;行列式

笔记附录

附录一、一些基础离散数学与抽象代数概念笔记

附录二、附录一中的定理证明


3.B 零空间与值域(Null Spaces and Ranges)

关键词:零空间、单射、值域、满射、线性映射基本定理、线性方程组

零空间与单射(Null Space and Injectivity)

在上一节3.A例3.4中提及了齐次线性方程组的解集——解空间。我们将概念广义化从线性映射角度来理解就引申出概念——零空间

,或者称作线性映射的
。由于线性映射也是函数,所以函数中
值域的概念可以引用,表示为
,或者称作线性映射的

摘录译文(页59)

3.12 定义 零空间

对于
零空间,表示为
,是由被
映射至
的向量组成的
的子集:

3.13 例 零空间
(a) 若
是从
的零映射,换句话说,若
对于每个
,则

(b) 设
被定义为
。则
的基是

(c) 设
是被定义为
的微分映射。仅有的导数等于零函数的函数是常函数。因此
的零空间等于常函数的集合。

(d) 设
是被定义为
的乘以
映射。仅有的对于所有的
,使得
的多项式
多项式。因此

(e) 设
是被定义为
的后移。显然
等于
当且仅当
全为
。因此此例中我们有

这里正式定义了零空间——由映射至

的所有向量组成的集合。对于一个线性方程组,零空间就是齐次线性方程组的解集。对于微分,零空间就是所有常函数的集合。对于乘以
,零空间是零多项式组成的零维空间。类比于非齐次线性方程组的解集等于齐次线性方程组的解集加上非齐次线性方程组的一个解的逻辑,我们同样可以在线性映射的视角下归纳出对于每个
,有
(参考上节3.A中相关的证明)——这种现象称作
仿射(3.E中将会提及——用于构造 商空间)。因此我们可以从线性映射的角度理解微积分中的一些现象,例如 为什么一个函数积分之后必须要加上常函数。因为常函数是微分映射的零空间而我们通常求出的一个反导结果是微分方程中的一个特解,那么求出对应微分方程的通解就需要把零空间和特解加上,即求出的特解加上常函数。下面将继续讨论零空间相关的性质。

摘录译文(页60)

3.14 零空间是子空间
。则
的子空间。


因为
是线性映射,所以我们知道
(定理3.11)。因此

。则

因此
,即
在加法下封闭。

。则

因此
,即
在数乘下封闭。

我们已证
包含
且在加法与数乘下封闭。因此
的子空间(定理1.34)。

这里证明了零空间是一个子空间。对于一个线性方程组,齐次线性方程组的解集又称作解空间——因为所有未知元为零是齐次线性方程组的解,任意两个齐次线性方程组的解之和依然是该齐次线性方程组的解,同理任意一个齐次线性方程组的解乘以一个常数依然是该齐次线性方程组的解。由于线性映射也是函数,函数中的单射概念可以用于讨论线性映射而且线性映射的零空间性质与单射性质有着很大的关联。

摘录译文(页60-61)

3.15 定义 单射
函数
称作
单射函数若
推出

3.16 单射等价于零空间等于

。则
是单射函数当且仅当


首先设
是单射函数。我们要证
。我们已知
(定理3.11)。为证另一方向的包含关系,设
。则
。因为
是单射函数,所以由上述等式推出
。因此正如我们所希望的那样我们可以得出

为证另一方向的蕴含关系,现在设
。我们要证
是单射函数。为此,设
。则
。因此
属于
,其中
。所以
推出
,即
是单射函数,正如我们所希望的那样。

这里定义了单射函数且告诉我们判断一个线性映射是否为单射函数的简易条件——零空间等于

。定义3.15中的条件的
逆否形式为:
推出
——
中的不同向量映射至
中的不同向量。定理3.16中是个
双向条件命题
,证明此类命题通常需
将命题拆开为两个单向条件命题来依次证明永真性——
。一个
单向条件命题
也可通过它的
逆否形式
来证明,集合的等价关系同理,可以证明两集合互相包含而得出。证明集合包含关系
的技巧是
构造一个被包含集合的元素
,然后推出

具体到本证明来说,先设前提:

是单射函数然后去证明
。已知
包含
,那么只需证明
包含
从而得出
。因此先构造一个
的元素
,然后通过一系列的定理定义推出该元素
属于
从而得出
。在另一个方向的证明中,前提变成了
,目的是推出
从而证明了
是单射函数。仔细观察第二部分的证明,可以发现第二部分的证明是形如
的复合条件命题——若
,则若
,则
(单射函数的定义),此条件命题等价于
——若
,则

值域与满射(Range and Surjectivity)

摘录译文(页61)

3.17 定义 值域
对于从
的函数
值域是由对于某些
具有形式
的向量组成的
的子集:

3.18 例 值域
(a) 若
是从
的零映射,换句话说,若
对于每个
,则

(b) 设
被定义为
,则
的基是

(c) 设
是被定义为
的微分映射。因为对于每个多项式
,存在多项式
使得
,所以
的值域是

这里定义了值域——对于所有满足存在

使得
的向量的集合,即
所有能被
映射到的
中的向量。对于一个线性方程组,值域就是所有使得线性方程组有解
的常数项系数
。定理3.24将证明若
,则任意常数项系数
并不总是使得原线性方程组有解
——即使得原线性方程组无解。下面将证明
值域也是个子空间

摘录译文(页62)

3.19 值域是子空间
,则
的子空间。


。则
(定理3.11)推出

,则存在
使得
。因此

所以
。因此
在加法下封闭。

,则存在
使得
。因此

所以
。因此
在数乘下封闭。

我们已证
包含
且在加法与数乘下封闭。因此
的子空间(定理1.34)。

这里证明了值域是一个子空间。对于一个线性方程组,若该方程组是齐次的,则必定存在解,即存在解

使得
成立。若常数项系数
分别存在解
,则常数项系数
也存在解
。读者可以自行验证。同理常数项系数
存在解
,则常数项系数
也存在解
,其中
。读者可以自行验证。

摘录译文(页62)

3.20 定义 满射
函数
称作
满射函数若该函数的值域等于

3.21 例
定义为
的微分映射
不是满射函数是因为多项式
不在
的值域中。然而,定义为
的微分映射
是满射函数是因为该映射的值域等于
,其中
是被
映射至的向量空间。

这里定义了满射函数——值域等于被映射的向量空间本身的函数。线性映射是否为满射取决于被映射的向量空间(正如例3.21所展示的那样)。

线性映射基本定理(Fundamental Theorem of Linear Maps)

摘录译文(页63)

3.22 线性映射基本定理
是有限维向量空间且
。则
是有限维向量空间且


的基;因此
。可以把线性无关列表
扩充成
的基
(定理2.33)。因此
。为完成证明,我们只需证明
是有限维向量空间且
。我们将通过证明
的基来完成证明。

。因为
生成
,我们可以把
写成

其中所有的
都属于
。等式两边施加
,我们得到

其中形如
的项消失了是因为每个
属于
。最后一个等式意味着
生成
。特别地,
是有限维向量空间。

为证
线性无关,设


所以

因为
生成
,我们可以把
写成

其中所有的
属于
。此等式意味着所有的
(与所有的
)都为
(因为
线性无关)。因此
线性无关,所以正如我们所希望的那样
的基。

此定理告诉我们线性映射的定义域的维数等于零空间的维数与值域的维数之和。形象地理解该证明的话,首先零空间的基

全部映射至零向量
,那么由零空间的基生成的零空间
将被“坍缩”至一个“奇点”
。因此值域的维数
就只剩下坍缩后的未被坍缩的空间的维数
。此证明是本节的核心——正如定理的名字一样。

PS:读者若学习本书感到对这些抽象概念理解吃力,3Blue1Brown视频可以作为辅助资料。

对于一个线性方程组,定义域的维数指的是未知元的个数

,零空间的维数指的是解空间的维数
,值域的维数指的是线性方程组的
(3.F节中会提及 矩阵的秩)。 满秩意味着
当且仅当
——
仅有唯一的解
对于每个方程组

该证明是关于多个线性空间之间的维数关系公式的证明。维数公式的证明可以通过构造对应的线性空间的基然后找出不同的基的长度关系来得证(根据维数的定义2.36)。特别地,当一个线性空间是另一个线性空间的子空间时,我们可以先构造子空间的基然后根据基的扩充定理(定理2.33)构造出包含子空间的线性空间的基。并且在证明过程中互为充要条件的命题

是等价的,我们可以
把原命题
转化为另一个相对容易证明的充要命题
来得证。

具体到本证明,我们要证关于线性空间

的维数公式
。首先我们发现
,那么先构造子空间
的基
得出
,然后根据基的扩充定理添加向量
使得
是包含子空间
的线性空间
的基并得出
。观察原公式我们知道根据已知条件原公式成立当且仅当
当且仅当
的基的长度为
。根据线性映射的性质,我们通过证明新添加的向量
映射到
的向量
的基来得证,这是因为定理3.5保证
的存在性,零空间的基
因为全部映射至零向量
而不能用于构造
的基。由于新添加的向量
长度为
且等于向量
的长度,只要证明了
的基就意味着

而一个向量组满足基的条件是线性无关且生成对应的线性空间,具体来说需要证明

线性无关且生成
。因此我们构造了
的元素
来证明
的线性组合来证明
生成
(根据值域的定义3.17与线性映射的性质3.2)。然后再根据相关定义与线性映射的性质找出等式
中组合系数
的可能性只能全部为零得证
线性无关。

摘录译文(页64)

3.23 映射至更小维度空间的线性映射不是单射
是有限维向量空间使得
。则没有从
的线性映射是单射。


。则

其中等式来源于线性映射基本定理(定理3.22)。不等式声明
,意味着
包含除
以外的向量。因此
不是单射(定理3.16)。

3.24 映射至更大维度空间的线性映射不是满射
是有限维向量空间使得
。则没有从
的线性映射是满射。


。则

其中等式来源于线性映射基本定理(定理3.22)。不等式声明
,意味着
不可能等于
。因此
不是满射。

这里两个证明告诉我们

,则
中不存在单射函数
,则
中不存在满射函数。反之,
中存在单射函数仅当
中存在满射函数仅当
。因此有推论
中存在双射函数(一一对应:单射且满射的函数)仅当
(3.D节会提及
同构)。不过在本节3.B习题17与18中将会证明 上述条件命题是双向的——充要命题(当且仅当)

接下来我们将利用上述两个结论讨论线性方程组的一些性质。

摘录译文(页65)

3.25 例
从线性映射角度重述问题:齐次线性方程组是否有非零解?

固定正整数
且令
对于
。考虑齐次线性方程组

显然
是上述方程组的一个解。这里问题在于任何其他解是否存在。

定义

方程
(这里
中的加法单位元,即全为
组成的长度为
的列表)与上述齐次线性方程组一样。

因此我们要知道
是否严格大于
。换句话说,我们可以重述关于非零解的问题如下(定理3.16):在什么情况下保证
不是单射?

3.26 齐次线性方程组
变量个数多于方程个数的齐次线性方程组有非零解。

使用上例中的记号与结论。因此
是从
的线性映射且我们有
个变量
个齐次线性方程组。从定理3.23我们看出
不是单射若

上述结论的例子:五个变量的四个齐次线性方程组有非零解。

上述结论告诉我们未知元个数多于方程个数的齐次线性方程组存在非零解。因此有推论——未知元个数多于方程个数的线性方程组存在多个解,读者可以自行验证。

摘录译文(页66)

3.27 例
考虑问题:对于某些常数项的选择非齐次线性方程组是否无解?
从线性映射角度重述此问题。

固定正整数
且令
对于
。对于
,考虑线性方程组
3.28
这里问题在于是否有一些
的选择使得上述方程组无解存在。

定义

方程
与方程组3.28一样。因此我们要知道是否
。所以我们可以重述关于对于一些
的选择没有解的问题如下:在什么情况下保证
不是满射?

3.29 非齐次线性方程组
方程个数多于变量个数的非齐次线性方程组对于一些常数项的选择无解。

使用上例中的记号与结论。因此
是从
的线性映射且我们有
个变量
个方程组。从定理3.24我们看出
不是满射若

上述结论的例子:四个变量的五个非齐次线性方程组对于一些常数项的选择无解。

上述结论告诉我们方程个数多于未知元个数的非齐次线性方程组对于一些常数项的选择无解


习题3.B

摘录译文(页67)

习题2:设
是向量空间且
使得
。证明

对于每个

,我们有
。所以

因此

。即

摘录译文(页67)

习题4:证明
不是
的子空间。

的基且
的基。定义

显然

。但是

可以看出

。子集
在加法下不封闭。因此子集
不是
的子空间。

摘录译文(页67)

习题7:设
是满足
的有限维向量空间。证明
不是
的子空间。

的基且
的基。因此
。定义的线性空间
满足题设。现在定义

显然

是因为线性映射的齐次性——
对于所有的
。因此
都不是单射(定理3.16)。但是

显然

。若
。则存在不全为零的标量
使得

等式两边同时施加

可得

由于

不等于
不全为
,因此
是单射。子集
在加法下不封闭。因此子集
不是
的子空间。

摘录译文(页68)

习题12:设
是有限维向量空间且
。证明存在
的子空间
使得

由于

的子空间(定理3.14),因此根据补空间定理2.34我们知道存在
的子空间
使得
,意味着
且对于每个
,存在
使得
。等式两边同时施加
可得
,即
。因此
。显然对于每个
。因此
。所以

摘录译文(页68)

习题13:设
是从
的线性映射使得
。证明
是满射。

根据

的定义求出
的基
。因此
使得

因为

的子空间(定理3.19)且
,所以
(2.C习题1)。因此
是满射。

摘录译文(页68)

习题18:设
都是有限维向量空间。证明存在从
的满射线性映射当且仅当

其中一个方向的命题已证明(定理3.24):

仅当不存在从
的满射线性映射。

该命题等价于:存在从

的满射线性映射仅当

现在只需证明:

仅当存在从
的满射线性映射。

的基且
的基。对于所有的
,定义
。因为
,所以
。因此对于每个
,存在
使得
推出
——
是满射。

摘录译文(页69)

习题23:设
是有限维向量空间且
。证明

对于每个

,存在
使得
,意味着存在
使得
。因此
推出

的基。则
推出
。因此
。这是因为任意生成列表包含基(定理2.31),所以基的长度(维数)不超过生成列表的长度
。 原命题得证。

摘录译文(页69)

习题24:设
是有限维向量空间且
。证明
当且仅当存在
使得

的基。若
,则可以把
的基扩充成
的基
。因为
,所以把
的基扩充成
的基
。所以推出

其中

线性无关(定理3.22)。

因此

可添加向量扩充成
的基并成为该基的元素,所以存在
使得
(定理3.5)。

所以

。现在考虑另一方向的证明。对于每个
,若
,则
。因此
推出

摘录译文(页69)

习题28:设
的基。证明存在
使得
对于每个

因为

的基,所以对于每个
,存在唯一的
使得
。对于每个
,定义函数
。替换
可得
。现在只需证明

对于所有的

。所以

因此

对于

对于所有的

。所以

因此

对于
。所以

上一节:线性映射的向量空间

下一节:矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值