推文信息
王阳,温忠麟,付媛姝.等效性检验——结构方程模型评价和测量不变性分析的新视角[J/OL].心理科学进展:1-9[2020-09-23].http://kns.cnki.net/kcms/detail/11.4766.R.20200922.1327.016.html.
等效性检验——结构方程模型评价和测量不变性分析的新视角
摘 要:
常用的结构方程模型拟合指数存在一定局限,如χ2以传统零假设为目标假设,无法验证模型,而RMSEA和CFI等描述性的拟合指数不具备推断统计性质,等效性检验有效弥补了这些问题。首先说明等效性检验如何评价单个模型的拟合,并解释其与零假设检验的不同,然后介绍等效性检验如何分析测量不变性,接着用实证数据展示了等效性检验在单个模型评价和测量不变性检验中的效果,并与传统模型评价方法比较。
关键词:
结构方程模型; 拟合指数; 等效性检验; 零假设检验; 测量不变性;
1 引言
在心理学、管理学等社会科学研究领域,结构方程模型(Structural Equation Model,SEM)是一种重要的统计工具,它能够更好地控制测量误差,并同时构建复杂的多变量模型,从而帮助研究者获得比一般回归分析更加准确的分析结果。结构方程建模的一个关键步骤是评价模型拟合,因为对模型有关参数的估计要以良好模型拟合为前提。如果模型拟合不佳,即理论模型为误设模型,则建立在此模型之上的参数估计(如因子载荷、路径系数及基于模型的信度指标等)结果都是不可靠的。
尽管模型拟合至关重要,但当前通用的模型拟合评价标准尚存一些不足。已有的模型拟合指数可分两类(Marcoulides&Yuan,2017)。一类是描述性的,最常用的是RMSEA和CFI (Lai,2020)。很多研究者通过简单报告RMSEA和CFI估计值并将其与一个经验临界值比较来支持他们的模型。这个过程不涉及显著性检验,就不知道推断错误的概率,因此很难确定怎样的拟合指数才是可以接受的(McNeish et al.,2018);另一类是推断性的,如χ2检验和χ2差值检验(用于嵌套模型比较和测量不变性检验),可以通过显著性检验来评价模型拟合好坏。然而,χ2存在很多问题。通常的统计检验都是将想要验证的假设作为备择假设,若统计显著,拒绝零假设接受备择假设时知道犯错误(即第一类错误)的概率(即显著性水平),但模型拟合χ2检验却将想要验证的假设作为零假设,统计不显著接受零假设时犯错误(即第二类错误)的概率通常都比较大,而且还不知道有多大,χ2检验无法真正起到验证模型的作用。
为改善上述模型拟合评价标准的不足,研究者提出将等效性检验(Equivalence Testing,ET)用于结构方程模型评价(Yuan&Chan,2016;Yuan et al.,2016)。该方法一方面修正了χ2检验的问题,另一方面,将推断统计元素融入了CFI和RMSEA,可以用于单个模型拟合评价和测量不变性检验,已经得到了越来越多的关注和应用(如Alpizar,2020;Fu et al.,2018;Swami&Barron,2019;Tóth-Király et al.,2018;Wang et al.,2020)。本文介绍等效性检验如何用于单个模型评价和测量不变性检验,然后进行实例演示,最后对相关问题进行了讨论和拓展。
2 等效性检验用于评价单个模型拟合
拟合函数Fml[S,Σ(θ)]是结构方程模型评价的一个重要概念,它代表了样本协方差矩阵S与假设模型隐含的协方差矩阵Σ(θ)的距离。应用研究者也可以简单地理解为S代表实际数据所反映的变量关系,Σ(θ)代表我们假设的变量关系,拟合函数衡量了变量关系在假设模型与实际数据中的差距(吴明隆,2010)。利用特定的算法(如极大似然估计),可以求得一个使拟合函数Fml[S,Σ(θ)]达到最小值的θ估计值,这个拟合函数的最小值用Fml表示。Fml0为Fml对应的总体真值,即Σ(θ)与真模型协方差矩阵Σ的最小距离。在很一般的条件下,随着样本容量增大,Fml收敛于Fml0 (温忠麟等,2012)。对于错误设定的模型,Fml0>0,它的取值反映了误设大小,此时似然比统计量Tml (即前文提到的χ2检验统计量)=(N-1)Fml近似服从一个非中心化的卡方分布χ2(δ),其自由度df=p(p+1)/2-q,p是显变量个数,q是自由参数个数;δ=(N-1)Fml0是非中心参数(Noncentrality Parameter);如果模型正确设定,即Fml0=0,Tml服从一个中心化的卡方分布χ2,δ=0(Yuan et al.,2016)。
χ2检验的传统零假设为:H0:Fml0=0或者H0:Σ=Σ(θ);而对于等效性检验,零假设变为:H0a:Fml0>ε0 (Yuan et al.,2016)。ε0是一个小正数,代表一个由研究者预先设定的可以容忍的误设程度。等效性检验的零假设也可以用非中心参数表示,即:H0a:δ>δ0,其中δ0=(N-1)ε0。令cα(ε0)为等效性检验的零假设分布χ2(δ0)在α水平(默认取0.05)的左侧临界值,如果Tml
对于等效性检验,临界点ε0的选择对分析至关重要(Counsell et al.,2020);因此需要有一个选择ε0的标准。为避免选择过于随意、主观,可以通过公式ε0=df(RMSEA0)2把ε0和RMSEA关联起来(Yuan et al.,2016),并选择RMSEA0