多目标优化蚁群算法的matlab_混合参数蚁群算法的改进优化

本文介绍了旅行商问题和蚁群算法的基本概念,并分享了一种改进的蚁群算法Matlab实现,强调了信息素更新规则的优化,引入了排名因子以提高算法效率。通过迭代收敛性测试,展示了算法在解决TSP问题上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蚁群算法是一个功能强大的优化算法,常用来求解旅行商 (TSP) 问题。本文分享一个我自己写的蚁群算法 Matlab 程序代码,详细交代其中的优化点。主要特色是对蚁群的

启发参数采用
混合参数,即每只蚂蚁的参数不一样,以更好地发挥出蚁群算法的优势。此外,我还对 信息素的记录规则进行了一些优化,使之好于天然蚁群的行为。

1、旅行商 (TSP) 问题

先交代一下什么是旅行商问题,即 Traveling Salesman Problem (TSP). 给定地图上 N 个点的坐标,让一个走街窜巷的小商贩从其中任何一个点出发,周游全部的 N 个点,每个点只经过一次,最后回到出发点。如何安排这 N 个点的访问次序,使周游路径的总长度最小?

5006aa69736f06804291a7245f18919a.png
图 1 一个 TSP 问题的实例,N = 30 个点

旅行商问题不同于最短路径,没有多项式时间的严格解法,属于 NP 难问题。主要原因是问题并非指定起点和终点的目的性旅行,而是要周游全部的 N 个点,且规定每个点只访问一次。旅行商问题类似于哈密顿环问题。后者是在一个非完全连通的无向图上判定周游路径是否存在,而前者则是在一个完全连通的无向图上寻找最短的周游路径。

2、蚁群算法简介

蚁群算法受自然界中的蚁群寻找最短路径的启发。每只蚂蚁遇到一个岔路口表现出随机行为,在群体留下的信息素和局域距离信息的贪心规则启发下选择道路。信息素的通俗理解就是蚂蚁们留下的“脚印”,用来帮助每只蚂蚁判断哪条路走的人多。而贪心规则就是尽量就近选择下一个点。比如一只蚂蚁站在点 i 上,下一个点 j 被访问的概率

如果 j 是已访问点 (visited),则

. 将所有可访问点的访问概率归一化,使用
轮盘赌算法随机抽签决定下一个被访问的点 j. 如果从 i 到 j 走的蚂蚁很多,
比较大,那么相应的转移概率
增大;如果 i 到 j 一步就要走很远,
比较大,那么相应的
减小。每只蚂蚁就这样随机行走一个环路,回到起点再来比较各人的 TSP 路径长度,留下信息素。关于蚁群算法的更详细的介绍见下面的文章:

Evan:蚁群算法 - 求解 TSP 问题

在传统的蚁群算法中,所有蚂蚁的

### 改进蚁群算法 MATLAB 实现代码 #### 自适应蚁群算法简介 自适应蚁群算法由 L. M. Gambardella 和 M. Dorigo 提出,旨在通过调整信息素挥发度提高基本蚁群算法的性能[^1]。 #### 算法核心要素 该算法主要改进在于动态调整信息素更新机制以及引入启发式因子 β 来平衡全局探索与局部开发之间的关系。当 β 较大时,算法更倾向于选择距离较短的路径;而当 β 设置为零时,则完全依赖于信息素浓度决定下一步方向[^4]。 #### MATLAB 代码示例 以下是基于上述原理编写的简化版本自适应蚁群算法MATLAB实现: ```matlab function [bestPath, bestLength] = adaptiveACO(distMatrix, numAnts, alpha, betaStart, rhoMin, rhoMax, maxIter) % 参数初始化 nCities = size(distMatrix, 1); pheromones = ones(nCities); % 初始信息素分布均匀 % 记录最佳解及其长度 bestLength = inf; for iter = 1:maxIter % 动态调整β值 (这里简单线性变化作为示范) beta = betaStart * (maxIter - iter) / maxIter; paths = cell(numAnts, 1); pathLengths = zeros(numAnts, 1); % 构建每只蚂蚁的路径 for antIdx = 1:numAnts currentCity = randi([1,nCities], 1); % 随机起点城市 visitedCities = currentCity; while length(unique(visitedCities)) < nCities nextCityProbabilities = calculateNextCityProbability(currentCity, ... setdiff(1:nCities, visitedCities), distMatrix, pheromones, alpha, beta); [~, nextCityIndex] = max(nextCityProbabilities); nextCity = find(setdiff(1:nCities, visitedCities)==nextCityIndex)+min(setdiff(1:nCities, visitedCities))-1; visitedCities(end+1) = nextCity; currentCity = nextCity; end completeTourDistance = sumDistancesAlongPath(visitedCities, distMatrix); paths{antIdx} = visitedCities; pathLengths(antIdx) = completeTourDistance; if completeTourDistance < bestLength bestPath = visitedCities; bestLength = completeTourDistance; end end % 更新信息素水平 updatePheromoneLevels(paths, pathLengths, pheromones, rhoMin + (rhoMax-rhoMin)*rand(), distMatrix); end end % 计算下一个城市的概率函数 function probabilities = calculateNextCityProbability(fromCity, toCities, distances, pheromones, alpha, beta) attractiveness = arrayfun(@(city)(1/distances(fromCity, city)), toCities).^beta .* ... pheromones(toCities).^(alpha); totalAttractiveness = sum(attractiveness); probabilities = attractiveness ./ totalAttractiveness; end % 求给定路径上的总距离 function distanceSum = sumDistancesAlongPath(path, distMatrix) distanceSum = 0; for i = 1:length(path)-1 fromCity = path(i); toCity = path(mod(i,length(path))+1); distanceSum = distanceSum + distMatrix(fromCity,toCity); end end % 更新信息素矩阵 function updatePheromoneLevels(paths, lengths, pheromones, evaporationRate, distMatrix) pheromones = (1-evaporationRate).*pheromones; for k = 1:length(lengths) thisPath = paths{k}; deltaTau = 1./lengths(k); for j = 1:length(thisPath)-1 fromCity = thisPath(j); toCity = thisPath(mod(j,length(thisPath))+1); pheromones(fromCity, toCity) = pheromones(fromCity, toCity) + deltaTau; pheromones(toCity, fromCity) = pheromones(toCity, fromCity) + deltaTau; %#ok<AGROW> end end end ``` 此段程序实现了自适应蚁群算法的核心逻辑,并考虑到了不同阶段对于启发式因素的不同重视程度。具体来说,在迭代初期更多关注长远规划(较小的 β),随着搜索过程推进逐渐增加对当前最优方案的关注权重(增大的 β)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值