detectmultiscale函数参数含义_OpenCV detectMultiScale函数

本文详细解析了OpenCV中HOGDescriptor::detectMultiScale函数的参数含义,包括检测阈值、滑动窗口移动距离、图像扩充大小、比例系数和组阈值。通过实例展示了不同参数设置如何影响行人检测的结果,如检测窗口数量和精度,并提供了交通灯检测场景的应用案例。
摘要由CSDN通过智能技术生成

对输入图片进行行人检测时由于图片的大小不一样,所以要用到多尺度检测。这里是用hog类的方法detectMultiScale。

函数原型:

HOGDescriptor::detectMultiScale(const GpuMat& img, vector&

found_locations, doublehit_threshold=0, Size win_stride=Size(),

Size padding=Size(), double scale0=1.05, int group_threshold=2)

作用:

该函数表示对输入的图片img进行多尺度行人检测 img为输入待检测的图片;found_locations为检测到目标区域列表;

参数说明:

参数3为程序内部计算为行人目标的阈值,也就是检测到的特征到SVM分类超平面的距离;

参数4为滑动窗口每次移动的距离。它必须是块移动的整数倍;

参数5为图像扩充的大小;

参数6 :scale0为比例系数,即被检测图像每一次被压缩的比例,这个可以从OPENCV的hog.cpp源文件中看出:

for( levels = 0; levels < nlevels; levels++

) { //若待检测图像的尺寸小于检测窗口的尺寸,则停止检测 levelScale.push_back(scale); if( cvRound(img.cols/scale) < winSize.width

|| cvRound(img.rows/scale) < winSize.height

|| scale0 <= 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值