用python证明不同分布的中心极限定理_常见的中心极限定理

本文探讨了林德伯格-莱维中心极限定理和棣莫佛-拉普拉斯中心极限定理,并使用Python的Mathematica模拟验证了独立随机变量和的分布趋向正态分布。通过模拟(0,1)上的均匀分布和两点分布的随机数,展示了如何通过标准化值生成近似正态分布的图形。" 121494101,11472815,Linux PAM认证机制与时间同步服务详解,"['安全', '服务器', 'Linux', '运维']
摘要由CSDN通过智能技术生成

摘要中心极限定理讨论的是在什么条件下,独立随机变量和的分布会收敛于正态分布,本文介绍常见的集中中心极限定理,并且用Mathematica实现相应的模拟。

1.林德伯格-莱维中心极限定理

设{Xn}是独立同分布的随机变量序列,且E(Xi )=μ,Var(Xi )=σ^2>0存在,若记

则对任意实数y,有:

Mathematica模拟验证林德伯格-莱维中心极限定理

产生10000个(0,1)上的均匀分布的随机数并计算其标准化值,如此重复10000次,将得到的标准化值画出直方图,通过观察直方图图形,可以看到近似正态分布曲线,代码如下:

h = {};

sMean = 10000/2;

sVar = Sqrt[10000/12];

For[i = 1, i <= 9999, i++,

dist = RandomVariate[UniformDistribution[{0, 1}], 10000];

s = Total[dist];

y = (s - sMean)/sVar;

h = Append[h, y];

]

Histogram[h]

结果直方图:

该例子可用于正态随机数的产生:先从(0,1)上的均匀分布产生12个随机数x1,x2,...,x12,再变换其为y=x1+x2+...+x12-6,则可以将y近似看成来自标准正态分布的一个随机数,如此重复进行。

2.棣莫佛-拉普拉斯中心极限定理

设n重伯努利试验中,事件A在每次试验中出现的概率为p(0

则对任意实数y,有:

Mathematica模拟验证林德伯格-莱维中心极限定理

产生10000个服从p=0.4的两点分布的随机数并计算其标准化值,如此重复10000次,将得到的标准化值画出直方图,通过观察直方图图形,可以看到近似正态分布曲线,代码如下:

h = {};

For[i = 1, i <= 9999, i++,

dist = RandomVariate[BinomialDistribution[1, 0.4], 10000];

s = Count[dist, x_ /; x > 0];

y = (s - 4000)/48.9898;

h = Append[h, y];]

Histogram[h]

结果直方图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值