
之前的两篇文章,我们推导了理想简谐振子以及阻尼振动的运动方程。在这篇中,我们将讨论一个简谐振子在一个周期性的外加驱动力(driving force)影响下,受迫振动(forced oscillation)行为会有如何的响应。最近在 A-Level 物理中,部分读者可能已经熟悉如下的结论:
对于一个受到外力驱动的简谐振子,如果外力的频率和振子的自然频率(natural frequency)相近,则受迫振动的振幅的幅度将会达到最大值,这个现象称作共振(resonance)。对于没有阻尼(undamped)的情况,振幅将趋于无穷大。
另外,在一些教材里,对于无阻尼受迫振动,还会给出一个也挺有意思的结论:
若驱动力频率小于振子的自然频率,振动与驱动力同相位(in phase);
若驱动力频率大于振子的自然频率,振动与驱动力反相(out of phase);
若驱动力频率等于振子的自然频率,振动落后于驱动力的相位差。
粗略想来,无阻尼受迫振动的这些特点似乎也不难理解。振子最喜欢以它的自然频率振动,所以如果外加了一个正对它胃口的驱动力,这一个愿打一个愿挨,大家步调一致,就可以搞出很大的振幅。
而对于受迫振动的相位问题,前两条的结论似乎也很容易说得通。驱动力频率太低,振子就有资本嫌振动太慢,不费吹灰之力就能跟住驱动力。驱动力频率太高,振子提着裤子都追不上,所以总是要落后个半拍。
但是要是问起受迫振动的振幅究竟有多大?共振时为什么偏偏是这么个令人疑惑的
下面我们来试着推导上面的几条结论。
无阻尼条件下的受迫简谐振子,受到的作用包括固有的回复力(restoring force)和周期性驱动力。体系的运动方程可以写作:
为了书写方便,定义
对应齐次方程的通解(complementary function)可以写作: