函数图像的振幅和相位_无阻尼受迫振动的振幅、相位及共振问题

139de2e75a2eb3770b7afba851d5a166.png

之前的两篇文章,我们推导了理想简谐振子以及阻尼振动的运动方程。在这篇中,我们将讨论一个简谐振子在一个周期性的外加驱动力(driving force)影响下,受迫振动(forced oscillation)行为会有如何的响应。最近在 A-Level 物理中,部分读者可能已经熟悉如下的结论:

对于一个受到外力驱动的简谐振子,如果外力的频率和振子的自然频率(natural frequency)相近,则受迫振动的振幅的幅度将会达到最大值,这个现象称作共振(resonance)。对于没有阻尼(undamped)的情况,振幅将趋于无穷大。

另外,在一些教材里,对于无阻尼受迫振动,还会给出一个也挺有意思的结论:

若驱动力频率小于振子的自然频率,振动与驱动力同相位(in phase);
若驱动力频率大于振子的自然频率,振动与驱动力反相(out of phase);
若驱动力频率等于振子的自然频率,振动落后于驱动力
的相位差。

粗略想来,无阻尼受迫振动的这些特点似乎也不难理解。振子最喜欢以它的自然频率振动,所以如果外加了一个正对它胃口的驱动力,这一个愿打一个愿挨,大家步调一致,就可以搞出很大的振幅。

而对于受迫振动的相位问题,前两条的结论似乎也很容易说得通。驱动力频率太低,振子就有资本嫌振动太慢,不费吹灰之力就能跟住驱动力。驱动力频率太高,振子提着裤子都追不上,所以总是要落后个半拍。

但是要是问起受迫振动的振幅究竟有多大?共振时为什么偏偏是这么个令人疑惑的

的相位差?驱动力频率小于/大于自然频率时真的是严格同相/反相?要解答这些问题,大概就需要数学硬钢,而不是直觉来指引我们正确的物理图像了。

下面我们来试着推导上面的几条结论。


无阻尼条件下的受迫简谐振子,受到的作用包括固有的回复力(restoring force)和周期性驱动力。体系的运动方程可以写作:

为了书写方便,定义

,于是这个方程可以写成一个
非齐次的二阶微分方程(second-order differential equation)。

对应齐次方程的通解(complementary function)可以写作:

,其中振幅
和相位
均取决于振子的初始条件。在我们的讨论中,
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值