抽象线性方程组(2)
前
言
(1)今天我们继续接着昨天的内容, 讨论抽象线性方程组的求解。今天的问题比较复杂, 我们将问题的求解分成几个阶段, 用“抽象”来解决“抽象”。
(2)①快速、准确地“翻译”已知条件和待求问题。这里包括了“秩”与“线性表出”的信息。
②“线性表出”的相关理论, 既要灵活使用定义, 同时也要熟练运用“秩”的相关理论, 这在之前向量组内容中有系统的讲解。
(3)①第一问: 利用两个线性表出的式子, 易得α5可以被α2, α3,α4线性表出;
②第二问: 将线性表出的信息翻译成秩的信息, 易得α3不可以被α1, α2, α4线性表出;
③第三问: 求抽象非齐次线性方程组的通解, 关键两步
(i)明确方程解的结构。本题r(α1+α5, α1, α2, α3, α4)=3, 则方程通解的形式应为x=k1ξ1+k2ξ2+η*
(ii)利用已知条件合理构造特解。本题的特解构造较简单, 难点在于齐次通解的构造。具体分析详见视频讲解。
(4)本题还可以参考昨天的方法一, 直接构造具体数字线性方程组求解, 请大家自行练习, 比较两种方法的优劣。
题
目
讲
解
文
稿
5 抽象方法_抽象线性方程组
最新推荐文章于 2022-03-30 16:21:15 发布
本文探讨了如何通过快速翻译条件,理解线性表出和秩的概念,解决复杂的抽象线性方程组。涉及求解步骤包括线性表出的应用、秩的判断、特定问题实例分析(如α5的线性表出与α3的独立性),以及非齐次方程组通解的构造方法。还提到了与具体数字方程组求解的对比练习。
摘要由CSDN通过智能技术生成