5 抽象方法_抽象线性方程组

本文探讨了如何通过快速翻译条件,理解线性表出和秩的概念,解决复杂的抽象线性方程组。涉及求解步骤包括线性表出的应用、秩的判断、特定问题实例分析(如α5的线性表出与α3的独立性),以及非齐次方程组通解的构造方法。还提到了与具体数字方程组求解的对比练习。
摘要由CSDN通过智能技术生成

274ecc0c6f36dd95fa0fa06979a89709.png

抽象线性方程组(2)

7150f147f3fc64217744864b4efb9918.png

(1)今天我们继续接着昨天的内容, 讨论抽象线性方程组的求解。今天的问题比较复杂, 我们将问题的求解分成几个阶段, 用“抽象”来解决“抽象”。 (2)①快速、准确地“翻译”已知条件和待求问题。这里包括了“秩”与“线性表出”的信息。 ②“线性表出”的相关理论, 既要灵活使用定义, 同时也要熟练运用“秩”的相关理论, 这在之前向量组内容中有系统的讲解。 (3)①第一问: 利用两个线性表出的式子, 易得α5可以被α2, α3,α4线性表出; ②第二问: 将线性表出的信息翻译成秩的信息, 易得α3不可以被α1, α2, α4线性表出; ③第三问: 求抽象非齐次线性方程组的通解, 关键两步 (i)明确方程解的结构。本题r(α1+α5, α1, α2, α3, α4)=3, 则方程通解的形式应为x=k1ξ1+k2ξ2+η* (ii)利用已知条件合理构造特解。本题的特解构造较简单, 难点在于齐次通解的构造。具体分析详见视频讲解。 (4)本题还可以参考昨天的方法一, 直接构造具体数字线性方程组求解, 请大家自行练习, 比较两种方法的优劣。

62cb91691b05ecb72eb908062ce81fab.png

稿

d764bc57a4625d5d6b20d65bc8ad02a2.png

32ce8198a13281ba9a42c450809918ca.gif

dde6eb6dcd276bbefdd300aa8d421d2b.png

1070b542abe1bd8e8f5fea4291fae97d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值