java的数组工具_Java数组操作工具

importjava.util.ArrayList;

importjava.util.Arrays;

importjava.util.List;

importjava.util.Map;

importjava.util.Random;

importjava.util.TreeMap;

/**

* @desc 数组操作工具

* @author OuyangPeng

* @datatime 2013-5-11 10:31:02

*

*/

publicclassMyArrayUtils {

/**

* 排序算法的分类如下: 1.插入排序(直接插入排序、折半插入排序、希尔排序); 2.交换排序(冒泡泡排序、快速排序);

* 3.选择排序(直接选择排序、堆排序); 4.归并排序; 5.基数排序。

*

* 关于排序方法的选择: (1)若n较小(如n≤50),可采用直接插入或直接选择排序。

* (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;

* (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

*

*/

/**

* 交换数组中两元素

*

* @since 1.1

* @param ints

*            需要进行交换操作的数组

* @param x

*            数组中的位置1

* @param y

*            数组中的位置2

* @return 交换后的数组

*/

publicstaticint[] swap(int[] ints,intx,inty) {

inttemp = ints[x];

ints[x] = ints[y];

ints[y] = temp;

returnints;

}

/**

* 冒泡排序方法:相邻两元素进行比较 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4

* 冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,

* 如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,

* 也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

3. 针对所有的元素重复以上的步骤,除了最后一个。

4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

* @since 1.1

* @param source

*            需要进行排序操作的数组

* @return 排序后的数组

*/

publicstaticint[] bubbleSort(int[] source) {

/*for (int i = 0; i 

for (int j = 0; j 

if (source[j] > source[j + 1]) { // 把大的值交换到后面

swap(source, j, j + 1);

}

}

}*/

for(inti = source.length -1; i>0; i--) {

for(intj =0; j 

if(source[j] > source[j +1]) {

swap(source, j, j + 1);

}

}

}

returnsource;

}

/**

* 选择排序法 方法:选择排序(Selection sort)是一种简单直观的排序算法,其平均时间复杂度为O(n2)。

*      它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,

*      再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。

* 性能:选择排序的交换操作介于0和(n-1)次之间, 选择排序的比较操作为n(n-1)/2次之间,

*       选择排序的赋值操作介于0和3(n-1)次之间,其平均时间复杂度为O(n2)

* 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。

* 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。

*

* @since 1.1

* @param source

*            需要进行排序操作的数组

* @return 排序后的数组

*/

publicstaticint[] selectSort(int[] source) {

for(inti =0; i 

for(intj = i +1; j 

if(source[i] > source[j]) {

swap(source, i, j);

}

}

}

returnsource;

}

/**

* 插入排序 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。 性能:比较次数O(n^2),n^2/4

* 复制次数O(n),n^2/4 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。

*

* @since 1.1

* @param source

*            需要进行排序操作的数组

* @return 排序后的数组

*/

publicstaticint[] insertSort(int[] source) {

for(inti =1; i 

for(intj = i; (j >0) && (source[j] 

swap(source, j, j - 1);

}

}

returnsource;

}

/**

* 快速排序 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 步骤为:

* 1. 从数列中挑出一个元素,称为 "基准"(pivot), 2.

* 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面

* (相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。 3.

* 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

* 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了

* 。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

*

* @since 1.1

* @param source

*            需要进行排序操作的数组

* @return 排序后的数组

*/

publicstaticint[] quickSort(int[] source) {

returnqsort(source,0, source.length -1);

}

/**

* 快速排序的具体实现,排正序

*

* @since 1.1

* @param source

*            需要进行排序操作的数组

* @param low

*            开始低位

* @param high

*            结束高位

* @return 排序后的数组

*/

privatestaticint[] qsort(intsource[],intlow,inthigh) {

inti, j, x;

if(low 

i = low;

j = high;

x = source[i];

while(i 

while(i  x) {

j--;

}

if(i 

source[i] = source[j];

i++;

}

while(i 

i++;

}

if(i 

source[j] = source[i];

j--;

}

}

source[i] = x;

qsort(source, low, i - 1);

qsort(source, i + 1, high);

}

returnsource;

}

// /

// 排序算法结束

// 

/**

* 二分法查找 查找线性表必须是有序列表

*

* @since 1.1

* @param source

*            需要进行查找操作的数组

* @return 需要查找的值在数组中的位置,若未查到则返回-1

*/

publicstaticint[] binarySearch(int[] source) {

inti,j;

intlow, high, mid;

inttemp;

for(i =0; i 

temp=source[i];

low=0;

high=i-1;

while(low <= high) {

mid = (low + high)/2;

if(source[mid]>temp) {

high=mid-1;

} else{

low = mid + 1;

}

}

for(j= i-1; j>high;j--)

source[j+1]=source[j];

source[high+1]=temp;

}

returnsource;

}

/**

* 反转数组

*

* @since 1.1

* @param source

*            需要进行反转操作的数组

* @return 反转后的数组

*/

publicstaticint[] reverse(int[] source) {

intlength = source.length;

inttemp =0;

for(inti =0; i >1; i++) {

temp = source[i];

source[i] = source[length - 1- i];

source[length - 1- i] = temp;

}

returnsource;

}

/**

* 在当前位置插入一个元素,数组中原有元素向后移动; 如果插入位置超出原数组,则抛IllegalArgumentException异常

*

* @param array

* @param index

* @param insertNumber

* @return

*/

publicstaticint[] insert(int[] array,intindex,intinsertNumber) {

if(array ==null|| array.length ==0) {

thrownewIllegalArgumentException();

}

if(index -1> array.length || index <=0) {

thrownewIllegalArgumentException();

}

int[] dest =newint[array.length +1];

System.arraycopy(array, 0, dest,0, index -1);

dest[index - 1] = insertNumber;

System.arraycopy(array, index - 1, dest, index, dest.length - index);

returndest;

}

/**

* 整形数组中特定位置删除掉一个元素,数组中原有元素向前移动; 如果插入位置超出原数组,则抛IllegalArgumentException异常

*

* @param array

* @param index

* @return

*/

publicstaticint[] remove(int[] array,intindex) {

if(array ==null|| array.length ==0) {

thrownewIllegalArgumentException();

}

if(index > array.length || index <=0) {

thrownewIllegalArgumentException();

}

int[] dest =newint[array.length -1];

System.arraycopy(array, 0, dest,0, index -1);

System.arraycopy(array, index, dest, index - 1, array.length - index);

returndest;

}

/**

* 2个数组合并,形成一个新的数组

*

* @param array1

* @param array2

* @return

*/

publicstaticint[] merge(int[] array1,int[] array2) {

int[] dest =newint[array1.length + array2.length];

System.arraycopy(array1, 0, dest,0, array1.length);

System.arraycopy(array2, 0, dest, array1.length, array2.length);

returndest;

}

/**

* 数组中有n个数据,要将它们顺序循环向后移动k位, 即前面的元素向后移动k位,后面的元素则循环向前移k位,

* 例如,0、1、2、3、4循环移动3位后为2、3、4、0、1。

*

* @param array

* @param offset

* @return

*/

publicstaticint[] offsetArray(int[] array,intoffset) {

intlength = array.length;

intmoveLength = length - offset;

int[] temp = Arrays.copyOfRange(array, moveLength, length);

System.arraycopy(array, 0, array, offset, moveLength);

System.arraycopy(temp, 0, array,0, offset);

returnarray;

}

/**

* 随机打乱一个数组

*

* @param list

* @return

*/

publicstaticList shuffle(List list) {

java.util.Collections.shuffle(list);

returnlist;

}

/**

* 随机打乱一个数组

*

* @param array

* @return

*/

publicint[] shuffle(int[] array) {

Random random = newRandom();

for(intindex = array.length -1; index >=0; index--) {

// 从0到index处之间随机取一个值,跟index处的元素交换

exchange(array, random.nextInt(index + 1), index);

}

returnarray;

}

// 交换位置

privatevoidexchange(int[] array,intp1,intp2) {

inttemp = array[p1];

array[p1] = array[p2];

array[p2] = temp;

}

/**

* 对两个有序数组进行合并,并将重复的数字将其去掉

*

* @param a

*            :已排好序的数组a

* @param b

*            :已排好序的数组b

* @return 合并后的排序数组

*/

privatestaticList mergeByList(int[] a,int[] b) {

// 用于返回的新数组,长度可能不为a,b数组之和,因为可能有重复的数字需要去掉

List c = newArrayList();

// a数组下标

intaIndex =0;

// b数组下标

intbIndex =0;

// 对a、b两数组的值进行比较,并将小的值加到c,并将该数组下标+1,

// 如果相等,则将其任意一个加到c,两数组下标均+1

// 如果下标超出该数组长度,则退出循环

while(true) {

if(aIndex > a.length -1|| bIndex > b.length -1) {

break;

}

if(a[aIndex] 

c.add(a[aIndex]);

aIndex++;

} elseif(a[aIndex] > b[bIndex]) {

c.add(b[bIndex]);

bIndex++;

} else{

c.add(a[aIndex]);

aIndex++;

bIndex++;

}

}

// 将没有超出数组下标的数组其余全部加到数组c中

// 如果a数组还有数字没有处理

if(aIndex <= a.length -1) {

for(inti = aIndex; i <= a.length -1; i++) {

c.add(a[i]);

}

// 如果b数组中还有数字没有处理

} elseif(bIndex <= b.length -1) {

for(inti = bIndex; i <= b.length -1; i++) {

c.add(b[i]);

}

}

returnc;

}

/**

* 对两个有序数组进行合并,并将重复的数字将其去掉

*

* @param a

*            :已排好序的数组a

* @param b

*            :已排好序的数组b

* @return合并后的排序数组,返回数组的长度=a.length + b.length,不足部分补0

*/

privatestaticint[] mergeByArray(int[] a,int[] b) {

int[] c =newint[a.length + b.length];

inti =0, j =0, k =0;

while(i 

if(a[i] <= b[j]) {

if(a[i] == b[j]) {

j++;

} else{

c[k] = a[i];

i++;

k++;

}

} else{

c[k] = b[j];

j++;

k++;

}

}

while(i 

c[k] = a[i];

k++;

i++;

}

while(j 

c[k] = b[j];

j++;

k++;

}

returnc;

}

/**

* 对两个有序数组进行合并,并将重复的数字将其去掉

*

* @param a

*            :可以是没有排序的数组

* @param b

*            :可以是没有排序的数组

* @return合并后的排序数组 打印时可以这样: Map map=sortByTreeMap(a,b);

*                 Iterator iterator = map.entrySet().iterator(); while

*                 (iterator.hasNext()) { Map.Entry mapentry =

*                 (Map.Entry)iterator.next();

*                 System.out.print(mapentry.getValue()+" "); }

*/

privatestaticMap mergeByTreeMap(int[] a,int[] b) {

Map map = newTreeMap();

for(inti =0; i 

map.put(a[i], a[i]);

}

for(inti =0; i 

map.put(b[i], b[i]);

}

returnmap;

}

/**

* 在控制台打印数组,之间用逗号隔开,调试时用

*

* @param array

*/

publicstaticString print(int[] array) {

StringBuffer sb = newStringBuffer();

for(inti =0; i 

sb.append(","+ array[i]);

}

System.out.println("\n"+sb.toString().substring(1));

returnsb.toString().substring(1);

}

}

 
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值