knn聚类还是分类_GCN人脸聚类

GCN数据特点:

邻接点个数不定

邻接点顺序不定

邻接边可能包含信息

邻接边可能包含多种关系
不同点属性差异,异构
  .............
无法直接迁移CNN
GNN主要关心两个问题:

  1. 信息的传播
  2. 信息的输出
    基本公式:

35c716b2cd50ce6a1839a1fccc6882ba.png


参考很多论文的做法,其实GCN的操作非常简单,基本上可以看做是一个局部的loacl smooth,即先对每个节点做一个变换(公式中的W,共享),再根据邻接关系进行加和取平均。多层GCN其实就是多做几次平滑。

至于理论方面的spectral或者是spatial,只是为了理论包装吧,个人觉得不用太在意。

一些资料:

  https://www.zhihu.com/question/54504471/answer/332657604

  A Comprehensive Survey on Graph Neural Networks

  Graph Neural Networks: A Review of Methods and Applications

  DGL

  pyg

   https://tkipf.github.io/graph-convolutional-networks/  

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Abstract—Clustering face images according to their latent identity has two important applications: (i) grouping a collection of face images when no external labels are associated with images, and (ii) indexing for efficient large scale face retrieval. The clustering problem is composed of two key parts: representation and similarity metric for face images, and choice of the partition algorithm. We first propose a representation based on ResNet, which has been shown to perform very well in image classification problems. Given this representation, we design a clustering algorithm, Conditional Pairwise Clustering (ConPaC), which directly estimates the adjacency matrix only based on the similarities between face images. This allows a dynamic selection of number of clusters and retains pairwise similarities between faces. ConPaC formulates the clustering problem as a Conditional Random Field (CRF) model and uses Loopy Belief Propagation to find an approximate solution for maximizing the posterior probability of the adjacency matrix. Experimental results on two benchmark face datasets (LFW and IJB-B) show that ConPaC outperforms well known clustering algorithms such as k-means, spectral clustering and approximate Rank-order. Additionally, our algorithm can naturally incorporate pairwise constraints to work in a semi-supervised way that leads to improved clustering performance. We also propose an k-NN variant of ConPaC, which has a linear time complexity given a k-NN graph, suitable for large datasets. Index Terms—face clustering, face representation, Conditional Random Fields, pairwise constraints, semi-supervised clustering.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值