大整数的代数运算_近世代数基础笔记(第一章)

学校一个朋友跟我说,学高等代数以前先打一个近世代数的底子,这样会对高等代数学习的更清楚一些,所以我搞了本比较简单的近世代数的书,打算以知乎为媒介来做做笔记。
第一章 基本概念

第一节 集合

Def 1.1若干个(有限或无限多个)具有某种特点的固定事物组成的全体叫做一个集合(简称集),集合中的事物称为集合的元素(简称)。

Def 1.2一个没有元素的集合叫做空集

Def 1.3若a是集合A的元素,则记为

equation?tex=a%5Cin+A%E6%88%96A%5Cni+a ,若a不是集合A的元素,则记为
equation?tex=a%5Cnotin+A+

Def 1.4子集 若B中的每个元素都属于A,则B是A的子集,记为

equation?tex=B%5Csubset+A%E6%88%96A%5Csupset+B

Def 1.5若集合B是集合A的子集,且A中至少有一个元素不属于B,则称B是A的真子集。记为

equation?tex=B%5Csubseteq+A

Def 1.6 集合相等

equation?tex=A%3DB%5Cleftrightarrow+A%5Csubset+B%5Cwedge+B%5Csubset+A

Def 1.7交集

equation?tex=A%5Ccap+B%3D%5Cleft%5C%7B+x%7Cx%5Cin+A%5Cwedge+x%5Cin+B%5Cright%5C%7D

Def 1.8并集

equation?tex=A%5Ccup+B%3D%5Cleft%5C%7B+x%7Cx%5Cin+A%5Cvee++x%5Cin+B%5Cright%5C%7D

Def 1.9 集合的积

equation?tex=A_%7B1%7D%2CA_%7B2%7D%2C...%2CA_%7Bn%7D 是n个集合,由一切从
equation?tex=A_%7B1%7D%2CA_%7B2%7D%2C...%2CA_%7Bn%7D 中按顺序取出的元素组
equation?tex=%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%28a_%7Bi%7D%5Cin+A_%7Bi%7D%29 所组成的集合称为集合
equation?tex=A_%7B1%7D%2CA_%7B2%7D%2C...%2CA_%7Bn%7D 的积,记为
equation?tex=A_%7B1%7D%5Ctimes+A_%7B2%7D%5Ctimes...%5Ctimes+A_%7Bn%7D

第二节 映射

Def 2.1 如果存在法则

equation?tex=f ,使得对于集合
equation?tex=A_%7B1%7D%5Ctimes+A_%7B2%7D%5Ctimes...%5Ctimes+A_%7Bn%7D 中任意一元素
equation?tex=%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%28a_%7Bi%7D%5Cin+A_%7Bi%7D%29 ,在集合
equation?tex=D 中有唯一确定的元素
equation?tex=d 与之对应
equation?tex=+,则称这个法则f是集合
equation?tex=A_%7B1%7D%5Ctimes+A_%7B2%7D%5Ctimes...%5Ctimes+A_%7Bn%7D 到集合
equation?tex=D 的一个映射,元
equation?tex=d 称为元素
equation?tex=%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29 在映射
equation?tex=f 下的像,元
equation?tex=%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29 称为
equation?tex=d 在映射
equation?tex=f 下的原像。常把
映射记为
equation?tex=f%3AA_%7B1%7D%5Ctimes+A_%7B2%7D%5Ctimes...%5Ctimes+A_%7Bn%7D%5Crightarrow+D+%28d%3Df%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%2Ca_%7Bi%7D%5Cin+A_%7Bi%7D%29+ .

映射需要注意的是像的唯一性。

第三节 代数运算

Def 3.1 代数运算 一个

equation?tex=A%5Ctimes+B
equation?tex=D 的映射叫做一个
equation?tex=A%5Ctimes+B
equation?tex=D 的代数运算。我们通常记为
equation?tex=%5Ccirc%3A%28a%2Cb%29%5Crightarrow+d%3Da%5Ccirc+b%E3%80%82%E5%85%B6%E4%B8%ADa%5Cin+A+%2Cb%5Cin+B%2Cd%5Cin+D .。若
equation?tex=A%2CB 都是有限集合的时候,我们通常用一张表来代表这种代数运算,即
equation?tex=%5Ccirc%3A%EF%BC%88a_%7Bi%7D%2Cb_%7Bj%7D%EF%BC%89%5Crightarrow+d_%7Bij%7D .

Def 3.2 假如

equation?tex=%5Ccirc+%E6%98%AF%E4%B8%80%E4%B8%AAA%5Ctimes+A%E5%88%B0A%E7%9A%84%E4%BB%A3%E6%95%B0%E8%BF%90%E7%AE%97 ,我们就说集合A对于代数运算
equation?tex=%5Ccirc 来说是闭的。也称
equation?tex=%5Ccirc%E6%98%AFA%E7%9A%84%E4%BA%8C%E5%85%83%E8%BF%90%E7%AE%97%E6%88%96%E4%BB%A3%E6%95%B0%E8%BF%90%E7%AE%97%E3%80%82

第四节 结合律

Def 4.1 称一个集合

equation?tex=A 的代数运算
equation?tex=%5Ccirc 适合
结合律,假如对于
equation?tex=A 的任何三个元
equation?tex=a%2Cb%2Cc 来说,都有
equation?tex=%EF%BC%88a%5Ccirc+b%EF%BC%89%5Ccirc+c%3Da%5Ccirc%28b%5Ccirc+c%29

由于我们的元素个数有限,所以对n的元素加括号的步骤有限,如果我们把所有加括号步骤得到的不同的结果记为

equation?tex=%CF%80_%7Bi%7D%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%28i%3D1%2C2%2C...N%29 我们规定

Def 4.2 若对于

equation?tex=A
equation?tex=n%28n%5Cgeq2%29 个固定元
equation?tex=a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D 来说,所有的
equation?tex=%CF%80_%7Bi%7D%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%28i%3D1%2C2%2C...N%29 都相等,我们就把由这些步骤得到的唯一结果记为
equation?tex=a_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D

Th 4.1

equation?tex=%E5%81%87%E5%A6%82%E4%B8%80%E4%B8%AA%E9%9B%86%E5%90%88A%E7%9A%84%E4%BB%A3%E6%95%B0%E8%BF%90%E7%AE%97%5Ccirc%E9%80%82%E5%90%88%E7%BB%93%E5%90%88%E5%BE%8B%EF%BC%8C%E9%82%A3%E4%B9%88%E5%AF%B9%E4%BA%8EA%E7%9A%84%E4%BB%BB%E6%84%8Fn%EF%BC%88n%5Cgeq2%EF%BC%89
equation?tex=%E4%B8%AA%E5%85%83a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%E6%9D%A5%E8%AF%B4%EF%BC%8C%E6%89%80%E6%9C%89%E7%9A%84%CF%80_%7Bi%7D%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%28i%3D1%2C2%2C...N%29%E9%83%BD%E7%9B%B8%E7%AD%89 ,也就是说符号
equation?tex=a_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D 总有意义。

证明:采用数学归纳法来证明,显然当n=2或n=3是命题成立,假设元素个数

equation?tex=%5Cleq n-1时命题也成立,则只要证明对于任意的
equation?tex=%CF%80%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29
equation?tex=%CF%80%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%3Da_%7B1%7D%5Ccirc+%28a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D%29 即可。

对于任意的

equation?tex=%CF%80%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29 ,设
equation?tex=b_%7B1%7D 表示前i个元经过一系列加括号运算得到的结果,
equation?tex=b_%7B2%7D 表示后n-i个元经过加括号运算得到的结果,因为
equation?tex=i%2Cn-i%5Cleq+n ,那么由归纳的假设有

equation?tex=b_%7B1%7D%3Da_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bi%7D%EF%BC%8Cb_%7B2%7D%3D+a_%7Bi%2B1%7D%5Ccirc...%5Ccirc+a_%7Bn%7D

所以

equation?tex=%CF%80%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%3D%28a_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bi%7D%29%5Ccirc%28a_%7Bi%2B1%7D%5Ccirc...%5Ccirc+a_%7Bn%7D%29

假设

equation?tex=i%3D1 ,则已经得证 ,假设
equation?tex=i%3E1 时,

equation?tex=%CF%80%28a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%29%3D%5Ba_%7B1%7D%5Ccirc%28a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bi%7D%29%5D%5Ccirc%28a_%7Bi%2B1%7D%5Ccirc...%5Ccirc+a_%7Bn%7D%29%3Da_%7B1%7D%5Ccirc%5B%28a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bi%7D%29%5Ccirc%28a_%7Bi%2B1%7D%5Ccirc...%5Ccirc+a_%7Bn%7D%29%5D
equation?tex=%3Da_%7B1%7D%5Ccirc%28a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D%29 证毕。

第五节 交换律

Def 5.1 我们说,一个

equation?tex=A%5Ctimes+A
equation?tex=D 的代数运算
equation?tex=%5Ccirc 适合
交换律,假如对于集合
equation?tex=A 的任何两个元
equation?tex=a%2Cb 来说,都有
equation?tex=a%5Ccirc+b%3Db%5Ccirc+a .

Th 5.1 假如一个集合

equation?tex=A 的代数运算
equation?tex=%5Ccirc 同时适合交换律和结合律,那么在
equation?tex=a_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D 里,元的次序可以交换。

证明 采用数学归纳法,当元个数是1或2时,显然结论成立,假设元个数

equation?tex=%3Dn-1 时,结论成立,则n的元随便排列,作成一个:
equation?tex=a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D ,这里
equation?tex=i_%7B1%7D%2Ci_%7B2%7D%2C...%2Ci_%7Bn%7D 仍是
equation?tex=1%2C2%2C...%2Cn 这n个数,只要证明
equation?tex=a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D%3Da_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D

由于

equation?tex=i_%7B1%7D%2Ci_%7B2%7D%2C...%2Ci_%7Bn%7D 中一定有一个数是
equation?tex=n ,假设为
equation?tex=i_%7Bk%7D ,那么根据归纳假设、结合律、交换律有:
equation?tex=a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D%3D%28a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bk-1%7D%7D%29%5Ccirc%5Ba_%7Bn%7D%5Ccirc%28a_%7Bi_%7Bk%2B1%7D%7D%5Ccirc+a_%7Bi_%7Bk%2B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D%29%5D

equation?tex=%3D%28a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bk-1%7D%7D%29%5Ccirc%5B%28a_%7Bi_%7Bk%2B1%7D%7D%5Ccirc+a_%7Bi_%7Bk%2B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D%29%5Ccirc+a_%7Bn%7D%5D

equation?tex=%3D%5B%28a_%7Bi_%7B1%7D%7D%5Ccirc+a_%7Bi_%7B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bk-1%7D%7D%29%5Ccirc%28a_%7Bi_%7Bk%2B1%7D%7D%5Ccirc+a_%7Bi_%7Bk%2B2%7D%7D%5Ccirc...%5Ccirc+a_%7Bi_%7Bn%7D%7D%29%5D%5Ccirc+a_%7Bn%7D

equation?tex=%3D%28a_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn-1%7D%29%5Ccirc+a_%7Bn%7D%3Da_%7B1%7D%5Ccirc+a_%7B2%7D%5Ccirc...%5Ccirc+a_%7Bn%7D 证毕。

第六节 分配律

Def 6.1 定义两种代数运算

equation?tex=%5Codot 是一个
equation?tex=B%5Ctimes+A
equation?tex=A 的代数运算,
equation?tex=%5Coplus 是一个
equation?tex=A 的代数运算,我们说,代数运算
equation?tex=%5Codot%EF%BC%8C%5Coplus 适合
左分配律,若果对于
equation?tex=B 的任何
equation?tex=b ,
equation?tex=A的任何
equation?tex=a_%7B1%7D%EF%BC%8Ca_%7B2%7D 来说,都有
equation?tex=b%5Codot%28a_%7B1%7D%5Coplus+a_%7B2%7D%29%3D%28b%5Codot+a_%7B1%7D%29%5Coplus%28b%5Codot+a_%7B2%7D%29

Th 6.1 假如

equation?tex=%5Coplus 适合结合律,而且
equation?tex=%5Codot%EF%BC%8C%5Coplus 适合左分配律,那么对于
equation?tex=B 的任何
equation?tex=b ,
equation?tex=A 的任何
equation?tex=a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D 来说,有
equation?tex=b%5Codot%28a_%7B1%7D%5Coplus...%5Coplus+a_%7Bn%7D%29%3D%28b%5Codot+a_%7B1%7D%29%5Coplus...%5Coplus%28b%5Codot+a_%7Bn%7D%29

证明:采用数学归纳法,显然

equation?tex=n%3D1%2C2 时,定理成立,假设有
equation?tex=n-1 个元时,命题成立,则有
equation?tex=n 个元的时候:

equation?tex=b%5Codot%28a_%7B1%7D%5Coplus...%5Coplus+a_%7Bn%7D%29%3Db%5Codot%5B%28a_%7B1%7D%5Coplus...%5Coplus+a_%7Bn-1%7D%29%5Coplus+a_%7Bn%7D%5D%3D%5Bb%5Codot+%28a_%7B1%7D%5Coplus...%5Coplus+a_%7Bn-1%7D%29%5D%5Coplus%28b%5Codot+a_%7Bn%7D%29

equation?tex=%3D%5B%28b%5Codot+a_%7B1%7D%29%5Coplus%28b%5Codot+a_%7B2%7D%29%5Coplus...%5Coplus%28b%5Codot+a_%7Bn-1%7D%29%5D%5Coplus%28b%5Codot+a_%7Bn%7D%29%3D%28b%5Codot+a_%7B1%7D%29%5Coplus...%5Coplus%28b%5Codot+a_%7Bn%7D%29 证毕。

Def 6.2 我们说,代数运算

equation?tex=%5Codot%EF%BC%8C%5Coplus 适合
右分配律,如果
equation?tex=%5Cforall+b%5Cin+B%5Cforall+a_%7B1%7D%2Ca_%7B2%7D%5Cin+A

equation?tex=%28a_%7B1%7D%5Coplus+a_%7B2%7D%29%5Codot+b+%3D%28a_%7B1%7D%5Codot+b%29%5Coplus%28a_%7B2%7D%5Codot+b%29 .

Th 6.2 假如

equation?tex=%5Coplus 适合结合律,而且
equation?tex=%5Codot%EF%BC%8C%5Coplus 适合右分配律,那么
equation?tex=%5Cforall+b%5Cin+B%5Cforall+a_%7B1%7D%2Ca_%7B2%7D%2C...%2Ca_%7Bn%7D%5Cin+A

equation?tex=%28a_%7B1%7D%5Coplus+a_%7B2%7D%5Coplus...%5Coplus+a_%7Bn%7D%29%5Codot+b%3D%28a_%7B1%7D%5Codot+b%29%5Coplus%28+a_%7B2%7D%5Codot+b%29%5Coplus...%5Coplus%28a_%7Bn%7D%5Codot+b%29

证明类似Th 6.1

第七节 双射、变换

Def 7.1 在一个映射

equation?tex=f%3AA%5Crightarrow%5Cbar%7BA%7D 中,若
equation?tex=%5Cbar%7BA%7D 中的每一个元素都至少是
equation?tex=A 中的某一元素的像,那么
equation?tex=f 叫做
equation?tex=A
equation?tex=%5Cbar%7BA%7D 的一个
满射

Def 7.2 一个

equation?tex=A
equation?tex=%5Cbar%7BA%7D 的映射
equation?tex=f%3AA%5Crightarrow%5Cbar%7BA%7D ,若满足
equation?tex=%5Cforall+a%2Cb%5Cin+A%2C%5Cforall%5Cbar%7Ba%7D%2C%5Cbar%7Bb%7D%5Cin+%5Cbar%7BA%7D%28a%5Cne+b%5CRightarrow+%5Cbar%7Ba%7D%5Cne+%5Cbar%7Bb%7D%29 ,则称
equation?tex=f
equation?tex=A
equation?tex=%5Cbar%7BA%7D 的一个
单射

Def 7.3 假如一个

equation?tex=A
equation?tex=%5Cbar%7BA%7D 的映射
equation?tex=f 既是满射又是单射,则称
equation?tex=f
equation?tex=A
equation?tex=%5Cbar%7BA%7D 间的一个
双射(一一映射)。

Th 7.1 一个

equation?tex=A
equation?tex=%5Cbar%7BA%7D 间的
双射
equation?tex=f 带来一个通常用
equation?tex=f%5E%7B-1%7D 表示的
equation?tex=A
equation?tex=%5Cbar%7BA%7D 间的
双射。

证明:定义映射

equation?tex=f%5E%7B-1%7D%EF%BC%9A%5Cbar%7BA%7D%5Crightarrow+A+
equation?tex=%5Cbar%7Ba%7D%5Crightarrow+a%28%5Cbar%7Ba%7D%3Df%5Cleft%28+a+%5Cright%29%29 ,先证明这是个映射,对于
equation?tex=%5Cbar%7BA%7D 中的任一元素
equation?tex=%5Cbar%7Ba%7D ,因为
equation?tex=f 是单射,所以有唯一确定的
equation?tex=a 满足
equation?tex=%5Cbar%7Ba+%7D%3Df%5Cleft%28+a+%5Cright%29 与之对应;

再证明

equation?tex=f%5E%7B-1%7D 是个满射,即证明对于
equation?tex=A 中的任何元素
equation?tex=a
equation?tex=%5Cbar%7BA%7D 中有原像与之对应,这是显然的,因为
equation?tex=f 是个
equation?tex=A
equation?tex=%5Cbar%7BA%7D 的映射,
equation?tex=%5Cforall+a%5Cin+A%5Cexists+%5Cbar%7Ba%7D%5Cin+%5Cbar%7BA%7D%28%5Cbar%7Ba%7D%3Df%5Cleft%28+a+%5Cright%29%29 ;

最后证明

equation?tex=f%5E%7B-1%7D 是个单射,即证明
equation?tex=%5Cforall+%5Cbar%7Ba%7D%EF%BC%8C%5Cbar%7Bb%7D%5Cin+%5Cbar%7BA%7D%28%5Cbar%7Ba%7D%5Cne+%5Cbar%7Bb%7D%5CRightarrow+a%5Cne+b%29 ,通过
equation?tex=f%28a%29%3D%5Cbar%7Ba%7D%2Cf%28b%29%3D%5Cbar%7Bb%7D ,若
equation?tex=a%3Db ,则
equation?tex=%5Cbar%7Ba%7D%3D%5Cbar%7Bb%7D ,与假设矛盾,所以
equation?tex=%5Cforall+%5Cbar%7Ba%7D%EF%BC%8C%5Cbar%7Bb%7D%5Cin+%5Cbar%7BA%7D%28%5Cbar%7Ba%7D%5Cne+%5Cbar%7Bb%7D%5CRightarrow+a%5Cne+b%29 得证。

Def 7.4 一个

equation?tex=A
equation?tex=A 的映射叫做
equation?tex=A 的一个
变换。相对应的有 满射变换单射变换双射变换

第八节 同态

之前的概念都是单纯考虑集合或单纯考虑代数运算,从这里开始,我们讨论有代数运算的集合。

Def 8.1一个

equation?tex=A
equation?tex=%5Cbar%7BA%7D 的映射
equation?tex=f 称为对于代数运算
equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D 来说
equation?tex=A%E5%88%B0%5Cbar%7BA%7D
同态映射,只要满足
equation?tex=%5Cforall+a%2Cb%5Cin+A%2Cf%28a%5Ccirc+b%29%3Df%5Cleft%28+a+%5Cright%29%5Cbar%7B%5Ccirc%7D+f%5Cleft%28+b+%5Cright%29 或写为
equation?tex=%5Cforall+a%2Cb%5Cin+A%5B%28a%5Crightarrow+%5Cbar%7Ba%7D%2Cb%5Crightarrow+%5Cbar%7Bb%7D%29%5CRightarrow+a%5Ccirc+b%5Crightarrow+%5Cbar%7Ba%7D+%5Cbar%7B%5Ccirc%7D+%5Cbar%7Bb%7D%5D .

Def 8.2 假如对于代数运算

equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D ,有一个
equation?tex=A
equation?tex=%5Cbar%7BA%7D 的满射的同态映射存在,我们就说,这个映射是一个
同态满射,并且称对于代数运算
equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D
equation?tex=A
equation?tex=%5Cbar%7BA%7D
同态

同态满射在比较两个集合对于两种代数运算的代数性质的时候有很好的效果,见如下几个定理。

Th 8.1 假如,对于代数运算

equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D 来说,
equation?tex=A%E5%92%8C%5Cbar%7BA%7D%E5%90%8C%E6%80%81 。那么

(i)若

equation?tex=%5Ccirc+ 适合结合律,则
equation?tex=%5Cbar%7B%5Ccirc%7D 适合结合律。

(ii)若

equation?tex=%5Ccirc 适合交换律,则
equation?tex=%5Cbar%7B%5Ccirc%7D 适合交换律。

证明:(i)对于

equation?tex=%5Cbar%7BA%7D 中的任意三个元素
equation?tex=%5Cbar%7Ba%7D%2C%5Cbar%7Bb%7D%2C%5Cbar%7Bc%7D ,由于A和
equation?tex=%5Cbar%7BA%7D 同构,所以至少存在A中的三个元素
equation?tex=a%2Cb%2Cc .
equation?tex=a%5Crightarrow+%5Cbar%7Ba%7D%2Cb%5Crightarrow+%5Cbar%7Bb%7D%2Cc%5Crightarrow%5Cbar%7Bc%7D ,考虑
equation?tex=%28a%5Ccirc+b%29%5Ccirc+c%5Crightarrow+%28%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bb%7D%29%5Cbar%7B%5Ccirc%7D%5Cbar%7Bc%7D
equation?tex=a%5Ccirc+%28b%5Ccirc+c%29%5Crightarrow+%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%28%5Cbar%7Bb%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bc%7D%29 ,由于
equation?tex=%5Ccirc 满足结合律,所以
equation?tex=%28a%5Ccirc+b%29%5Ccirc+c%3Da%5Ccirc+%28b%5Ccirc+c%29 ,由映射的定义有
equation?tex=%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%28%5Cbar%7Bb%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bc%7D%29%3D%28%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bb%7D%29%5Cbar%7B%5Ccirc%7D%5Cbar%7Bc%7D

(ii)同理对于

equation?tex=%5Cbar%7BA%7D 中的任意两个元素
equation?tex=%5Cbar%7Ba%7D%2C%5Cbar%7Bb%7D ,至少存在两个
equation?tex=A 中的元素
equation?tex=a%2Cb ,满足
equation?tex=a%5Crightarrow+%5Cbar%7Ba%7D%2Cb%5Crightarrow+%5Cbar%7Bb%7D ,那么
equation?tex=a%5Ccirc+b%5Crightarrow+%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bb%7D%2Cb%5Ccirc+a%5Crightarrow+%5Cbar%7Bb%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Ba%7D ,考虑到
equation?tex=a%5Ccirc+b%3Db%5Ccirc+a ,则
equation?tex=%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bb%7D%3D%5Cbar%7Bb%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Ba%7D ,证毕。

Th 8.2 假设

equation?tex=%5Codot%EF%BC%8C%5Coplus 都是集合
equation?tex=A 的代数运算,
equation?tex=%5Cbar%7B%5Codot%7D%EF%BC%8C%5Cbar%7B%5Coplus%7D 是集合
equation?tex=%5Cbar%7BA%7D 的代数运算,并且存在
equation?tex=A
equation?tex=%5Cbar%7BA%7D 的满射
equation?tex=f ,使得
equation?tex=A
equation?tex=%5Cbar%7BA%7D 对于代数运算
equation?tex=%5Codot%EF%BC%8C%5Cbar%7B%5Codot%7D 同态,
equation?tex=A
equation?tex=%5Cbar%7BA%7D 对于代数运算
equation?tex=%5Cotimes%EF%BC%8C%5Cbar%7B%5Cotimes%7D 也同态。那么,

(i)若

equation?tex=%5Codot%EF%BC%8C%5Cotimes 适合左分配律,则
equation?tex=%5Cbar%7B%5Codot%7D%EF%BC%8C%5Cbar%7B%5Coplus%7D 也适合左分配律。

(ii)若

equation?tex=%5Codot%EF%BC%8C%5Cotimes 适合右分配律,则
equation?tex=%5Cbar%7B%5Codot%7D%EF%BC%8C%5Cbar%7B%5Coplus%7D 也适合右分配律。

证明:只要证明(i)即可,(ii)和(i)证明类似。

假设

equation?tex=%5Cbar%7BA%7D 中的三个元素
equation?tex=%5Cbar%7Ba%7D%2C%5Cbar%7Bb%7D%2C%5Cbar%7Bc%7D ,可以假定
equation?tex=a%5Crightarrow+%5Cbar%7Ba%7D%2Cb%5Crightarrow+%5Cbar%7Bb%7D%2Cc%5Crightarrow%5Cbar%7Bc%7D ,只要证明
equation?tex=%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%28%5Cbar%7Bb%7D%5Cbar%7B%5Coplus%7D%5Cbar%7Bc%7D%29%3D%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bb%7D%29%5Cbar%7B%5Coplus%7D%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bc%7D%29 .

equation?tex=a%5Codot%28b%5Coplus+c%29%5Crightarrow+%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%28%5Cbar%7Bb%7D%5Cbar%7B%5Coplus%7D%5Cbar%7Bc%7D%29%2C%28a%5Codot+b%29%5Coplus%28a%5Codot+c%29%5Crightarrow+%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bb%7D%29%5Cbar%7B%5Coplus%7D%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bc%7D%29

equation?tex=%5Codot%EF%BC%8C%5Coplus 适合左分配律,所以
equation?tex=%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%28%5Cbar%7Bb%7D%5Cbar%7B%5Coplus%7D%5Cbar%7Bc%7D%29%3D%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bb%7D%29%5Cbar%7B%5Coplus%7D%28%5Cbar%7Ba%7D%5Cbar%7B%5Codot%7D%5Cbar%7Bc%7D%29 得证。

第九节 同构、自同构

Def 9.1 我们称,一个

equation?tex=A
equation?tex=%5Cbar%7BA%7D 的双射
equation?tex=f 是一个对于代数运算
equation?tex=%5Ccirc%EF%BC%8C%5Cbar%7B%5Ccirc%7D 来说的
equation?tex=A
equation?tex=%5Cbar%7BA%7D
同构映射(简称同构),假如在
equation?tex=f
equation?tex=%5Cforall+a%2Cb%5Cin+A%2Ca%5Crightarrow+%5Cbar%7Ba%7D%2Cb%5Crightarrow+%5Cbar%7Bb%7D 就有
equation?tex=a%5Ccirc+b%5Crightarrow+%5Cbar%7Ba%7D%5Cbar%7B%5Ccirc%7D%5Cbar%7Bb%7D

Def 9.2 假设在

equation?tex=A
equation?tex=%5Cbar%7BA%7D 间,对于代数运算
equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D 来说,存在一个同构映射,那么称对于代数运算
equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D 来说
equation?tex=A
equation?tex=%5Cbar%7BA%7D 同构,并且用符号
equation?tex=A%E2%89%88%5Cbar%7BA%7D 来表示。

对于代数运算

equation?tex=%5Ccirc+
equation?tex=%5Cbar%7B%5Ccirc%7D 来说,
equation?tex=A
equation?tex=%5Cbar%7BA%7D 同构。那么对于代数运算
equation?tex=%5Ccirc
equation?tex=%5Cbar%7B%5Ccirc%7D 来说,
equation?tex=A
equation?tex=%5Cbar%7BA%7D 这两个集合,抽象的来看,没有什么区别(除了命名上的不同),若一个集合有一个对于他自己代数运算所拥有的性质,那么另一个集合有着完全类似的性质。

Def 9.3 自同构 假如

equation?tex=%5Ccirc
equation?tex=A 上的一个代数运算,对于
equation?tex=%5Ccirc
equation?tex=%5Ccirc 来说的一个
equation?tex=A
equation?tex=A 之间的同构映射称为一个对于
equation?tex=%5Ccirc 来说的
equation?tex=A 的自同构(映射)。

第十节 等价关系与集合的分类

这里不采用张禾瑞《近世代数基础》上的定义,我们采用卓里奇中的关于关系的定义。

Def 10.1 关系 序偶(有顺序的)

equation?tex=%28x%2Cy%29 的任何集合称为关系
equation?tex=%5CRe .

组成

equation?tex=%5CRe 的所有序偶的第一个元素的集合
equation?tex=X 称为关系
equation?tex=%5CRe 的定义域,第二个元素的集合
equation?tex=Y 称为关系
equation?tex=%5CRe 的值域。

从这个角度,可以把关系

equation?tex=%5CRe 解释为直积
equation?tex=X%5Ctimes+Y 的子集
equation?tex=%5CRe ,而且因为
equation?tex=X%5Csubset+X%27%2CY%5Csubset+Y%27%2C%5CRe%5Csubset+X%5Ctimes+Y%5Csubset+X%27%5Ctimes+Y%27 ,所以同一个关系可以作为不同集合的子集给出。

常常把

equation?tex=%28x%2Cy%29%5Cin+%5CRe 写成
equation?tex=x%5CRe+y ,并说
equation?tex=x
equation?tex=y 之间的关系为
equation?tex=%5CRe

如果

equation?tex=%5CRe%5Csubset+X%5E%7B2%7D ,就说在
equation?tex=X 上给定了关系
equation?tex=%5CRe

Def 10.2 对角线

equation?tex=%5CDelta+%3D%5Cleft%5C%7B+%28a%2Cb%29%5Cin+X%5E%7B2%7D%7Ca%3Db%5Cright%5C%7D
equation?tex=X%5E%7B2%7D 的子集,它给出了集合
equation?tex=X 中元素的
相等关系,记为
equation?tex=a%5CDelta+b%3A%28a%2Cb%29%5Cin%5CDelta
equation?tex=a%3Db

Def 10.3 集合

equation?tex=A上的一个关系
equation?tex=%5Csim 叫做
equation?tex=a%5Csim+b
等价关系,如果·
equation?tex=%5Csim 满足:

equation?tex=I.
自反性
equation?tex=a%5Csim+a

equation?tex=II.
传递性
equation?tex=%28a%5CRe+b%29%5Cwedge+%28b%5CRe+c%29%5CRightarrow+a%5CRe+c

equation?tex=III.
对称性
equation?tex=a%5CRe+b%5CRightarrow+b%5CRe+a

equation?tex=a%5Csim+b ,则称a与b等价

Def 10.4 若能把一个集合

equation?tex=A 分成若干个子集,使得
equation?tex=A 中的每一个元素仅属于一个子集,那么每个子集叫做类,这些类的全体称为集合
equation?tex=A 的一个
分类

一个集合上的等价关系和集合的分类有一定的关系,从以下的两个定理可以看出。

Th 10.1 集合

equation?tex=A 上的一个分类决定了A上的一个等价关系。

证明:定义一个关系

equation?tex=a%5CRe+b 当且仅当
equation?tex=a%2Cb 在同一类。

(i)自反性,a和a显然是同一类的。

(ii)传递性,a和b同一类,b和c同一类,显然a和c是同一类的。

(iii)对称性,a和b是同一类,可以推出b和a是同一类的。

Th 10.2 集合

equation?tex=A 上的一个等价关系决定了
equation?tex=A 的一个分类。

证明:取 集合

equation?tex=A 中的一个元素
equation?tex=a ,把所有与
equation?tex=a 等价的所有元素放在一起组成
equation?tex=A 的一个子集,这个子集用
equation?tex=%5Ba%5D 表示,我们要证明,所有这样得到的子集就是
equation?tex=A 的一个分类,我们先证等价的两个元素
equation?tex=a%2Cb
equation?tex=%5Ba%5D%2C%5Bb%5D 是一样的,再证明
equation?tex=A 中的每一个元素只能属于一个子集,再证明
equation?tex=A 中的每个元素必然属于某个子集。

(i)要证明

equation?tex=a%5Csim+b%5CRightarrow+%5Ba%5D%3D%5Bb%5D

我们假设

equation?tex=a%5Csim+b ,由等价关系的传递性和
equation?tex=%5Ba%5D%2C%5Bb%5D 的定义,有:

任取

equation?tex=c%5Cin+%5Ba%5D%5CRightarrow+c%5Csim+a%28a%5Csim+b%29%5CRightarrow+c%5Csim+b%5CRightarrow+c%5Cin+%5Bb%5D 这就证明了
equation?tex=%5Ba%5D%5Csubset%5Bb%5D

同理可证

equation?tex=%5Bb%5D%5Csubset%5Ba%5D ,这样就证明了
equation?tex=%5Ba%5D%3D%5Bb%5D .

(ii)假设

equation?tex=a 不止属于一个子集,假定
equation?tex=a%5Cin%5Bb%5D+%2Ca%5Cin%5Bc%5D%5CRightarrow%28a%5Csim+b%2Ca%5Csim+c%29%5CRightarrow+c%5Csim+b%5CRightarrow%5Bc%5D%3D%5Bb%5D ,这就说明了
equation?tex=a 只能属于一个子集。

(iii)

equation?tex=A 中的每个元素一定属于某个子集,这是显然的,
equation?tex=a%5Csim+a%5CRightarrow+a%5Cin%5Ba%5D

这就证明了与

equation?tex=a 等价的所有元素组成的子集是
equation?tex=A 的一个类。

Def 10.5 假设我们有了一个集合的一个分类,称一个类里的任何一个元素称为这个类的一个代表,由每个类的一个代表组成的集合叫做一个全体代表团。

Def 10.6 令

equation?tex=A%3DZ ,取一个固定的整数
equation?tex=n ,定义一个
equation?tex=A 上的一个关系
equation?tex=%5CRe ,满足

equation?tex=a%5CRe+b%5CLeftrightarrow+n%7Ca-b
equation?tex=a-b 整除n,也就是
equation?tex=a 同余
equation?tex=b
equation?tex=n ),称这个关系为同余关系,记为
equation?tex=a%3Db%EF%BC%88modn%EF%BC%89

证明:显然

equation?tex=a
equation?tex=a 同余,自反性成立,
equation?tex=a 同余
equation?tex=b
equation?tex=n ,那么
equation?tex=n%7Ca-b ,那么显然
equation?tex=n%7Cb-a ,对称性满足;
equation?tex=n%7Ca-b%5Cwedge+n%7Cb-c%5CRightarrow+n%7C%28a-b%29%2B%28b-c%29%5CRightarrow+n%7Ca-c ,传递性满足。

Def 10.7 同余关系确定的

equation?tex=A 的一个分类叫做模
equation?tex=n 的剩余类,我们来看看这个分类是什么样子的。任取一个整数,一定与
equation?tex=0%2C1%2C...%2Cn-1 中的一个整数同余模
equation?tex=n ,并且这个整数不可能同时与
equation?tex=0%2C1%2C...%2Cn-1 中的两个整数同余,所以这确定了
equation?tex=A 的一个分类,我们取
equation?tex=0%2C1%2C...%2Cn-1 为每个类的代表,当然也可以取
equation?tex=1%2C2%2C...%2Cn 作为每个类的代表。这样的类称为模
equation?tex=n
剩余类。n是负整数是,得到的剩余类和模
equation?tex=%5Cleft%7C+n+%5Cright%7C 的剩余类完全一样。

equation?tex=%5B0%5D%3D%5Cleft%5C%7B+0%2C%5Cpm+n%2C%5Cpm2n%2C...+%5Cright%5C%7D+%2C%5B1%5D%3D%5Cleft%5C%7B+1%2C1%5Cpm+n%2C1%5Cpm2n%2C...%5Cright%5C%7D...%5C%5C+%5Bn-1%5D%3D%5Cleft%5C%7B+n-1%2Cn-1%5Cpm+n.n-1%5Cpm2n%2C...+%5Cright%5C%7D

Def 10.8 偏序关系

equation?tex=M 是某个集合,
equation?tex=X%3D%5Crho%28M%29
equation?tex=M 全体子集的集合,对于集合
equation?tex=X%3D%5Crho%28M%29 中的任何两个元素
equation?tex=a%2Cb ,下列三个可能之一总是成立的:
equation?tex=a%5Csubset+b%3Bb%5Csubset+a%3B
equation?tex=a 不是
equation?tex=b 的子集,
equation?tex=b 也不是
equation?tex=a 的子集。

定义一个

equation?tex=X%5E%7B2%7D 中的关系
equation?tex=%5CRe
equation?tex=a%5CRe+b%3A%3D%28a%5Csubset+b%29 ,这个关系就是
equation?tex=X 的子集间的包含关系。

这个定义有下列性质:

equation?tex=%28I%29.a%5CRe+a (任何集合都是自己的子集)(
自反性

equation?tex=%28II%29.%28a%5CRe+b%29%5Cwedge+%28b%5CRe+c%29%5CRightarrow+a%5CRe+c (
equation?tex=a%5Csubset+b+%2Cb%5Csubset+c%5CRightarrow+a%5Csubset+c )(
传递性

equation?tex=%28III%29.%28a%5CRe+b%29%5Cwedge%28b%5CRe+a%29%5CRightarrow+a%5CDelta+b%2C%E5%8D%B3a%3Db
反对称性

如果某集合

equation?tex=X 中的任意两个元素之间的具有上述三个性质,则称该关系称为集合
equation?tex=X 上的
偏序关系,常把这个关系写成
equation?tex=a%5Cpreceq+b ,称
equation?tex=b
equation?tex=a 之后。

Def 10.9如果在附加上性质

equation?tex=%5Cforall+a%5Cforall+b%28%28a%5CRe+b%29%5Cvee%28b%5CRe+a%29%29 ,也就是说集合
equation?tex=X 中的
任何两个元素都是可比的,此时称关系
equation?tex=%5CRe 为序关系,定义了序关系的集合
equation?tex=X 称为线性序集。

equation?tex=Keep+
equation?tex=calm
equation?tex=and
equation?tex=carry
equation?tex=on.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
密码学分为两类密码:对称密码和非对称密码。对称密码主要用于数据的加/解密,而非对称密码则主要用于认证、数字签名等场合。非对称密码在加密和解密时,是把加密的数据当作一个大的正整数来处理,这样就涉及到大整数的加、减、乘、除和指数运算等,同时,还需要对大整数进行输出。请采用相应的数据结构实现大整数的加、减、乘、除和指数运算,以及大整数的输入和输出。 【基本要求】 1.要求采用链表来实现大整数的存储和运算,不允许使用标准模板类的链表类(list)和函数。 同时要求可以从键盘输入大整数,也可以文件输入大整数大整数可以输出至显示器,也可以输出至文件。大整数的存储、运算和显示,可以同时支持二进制和十进制,但至少要支持十进制。大整数输出显示时,必须能清楚地表达出整数的位数。测试时,各种情况都需要测试,并附上测试截图;要求测试例子要比较详尽,各种极限情况也要考虑到,测试的输出信息要详细易懂,表明各个功能的执行正确。 2.要求大整数的长度可以不受限制,即大整数的十进制位数不受限制,可以为十几位的整数,也可以为500多位的整数,甚至更长;大整数运算和显示时,只需要考虑正的大整数。如果可能的话,请以秒为单位显示每次大整数运算的时间。 3.要求采用类的设计思路,不允许出现类以外的函数定义,但允许友元函数。主函数只能出现类的成员函数的调用,不允许出现对其它函数的调用。 4.要求采用多文件方式:.h文件存储类的声明,.cpp文件存储类的实现,主函数main存储在另外一个单独的cpp文件。如果采用类模板,则类的声明和实现都放在.h文件。 5.不强制要求采用类模板,也不要求采用可视化窗口;要求源程序有相应注释。 6.要求采用Visual C++ 6.0及以上版本进行调试。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值