背景虚化_摄影:什么叫背景虚化?镜头焦距?等效焦距?

本文介绍了摄影中的三个关键概念:背景虚化、镜头焦距和等效焦距。背景虚化是通过小景深实现,可以通过大光圈、长焦距或缩短拍摄距离来创造。镜头焦距决定了景深和拍摄视角,焦距越长,背景越虚,视角越窄;反之,焦距越短,背景清晰,视角更广。等效焦距则涉及到不同传感器尺寸的转换系数,用于在不同尺寸传感器间比较视角效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有位摄友问:什么叫背景虚化?什么叫镜头焦距?什么叫等效焦距?带着这三个问题,我们进行详细讲解。

197d9d19ad3d9f2134226ff93ccdfb96.png

1、什么叫背景虚化?

背景虚化,简单而言就是下图这样的照片:背景如奶油般柔和,虚化模糊;主体清晰如刀般锐利。这就是背景虚化的效果。

cff699b6c9c0c83ca14503c76e0303ea.png

从摄影专业角度来说,上图这种画面效果叫小景深。景深就是画面的清晰范围,清晰范围之外的就会有不同程度的虚化模糊。景深小说明背景虚化模糊,而景深大说明背景清晰。

64aec3ea70a811c814aabefc9b68520f.png

同时,获得小景深(背景虚化效果)的方式主要有三种方式:开大光圈、使用长焦距、缩短拍摄距离。三者做到一种即可获得小景深,三者都做到可以获得极小的景深。

51a5af80b0faaee3d3a1bb9908478600.png

2、什么叫镜头焦距?

镜头焦距,就是镜头的光学中心到感光元件的距离。镜头上一般会标示该镜头的焦距或焦距范围,如50mm代表该镜头是焦距50mm的定焦镜头,17-40mm代表该镜头是焦距为17-40mm的变焦镜头。

6609115dba41927d1c54f55385c479f1.png
315f59bf1e9c8b3a92a8405be2bce01a.png

镜头焦距决定景深和拍摄视角。

我们在第一个问题说过景深,焦距越长,景深越小,背景虚化,如长焦拍飞鸟;焦距越短,则景深越大,背景清晰,如广角拍风光。

a042121476ea5917b1621f4d81904551.png

焦距和视角的关系好比你的食指与大拇指捏成一个圆,这个圆靠近你的眼睛,看到的画面越多;这个圆远离眼睛,看到的画面越少。焦距越广,视角越大,拍摄的画面越多;焦距越长,视角越小,拍摄的画面越少,就像被拉近放大一般。

3485657847d5f21d8d185365dc95ad61.png
3c6b3aa2a68fbea664ddcaaabe83ff3b.png
479c84a48cfc11e9b42526b7fa562f90.png

3、什么叫等效焦距?

等效焦距,就是实际焦距,这与感光元件的尺寸有关。

使用在全画幅的镜头可以安装在残画幅(半画幅)上,但因为全画幅的感光元件较大,而残画幅的感光元件较小,两者的尺寸之比就使得镜头的焦距需要用到一个转换系数。如尼康和索尼都是1.5,佳能是1.6,松下和奥林巴斯的4/3系统是2。下图就是在同一位置,使用同一焦距拍摄,拍摄到的画面大小不一样。

57074ac00fce6878e27aa3b4cbe846d8.png

如佳能EF50mm镜头安装在残画幅相机上,等效焦距=50mm X 1.6=80mm。

如有不足之处还请摄友们指正,我是Tony说摄影,欢迎您的关注。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值