最近recitation上提到鞍点近似法(saddle point approximation,也称最速下降法)的时候,很多同学都一脸懵逼(这就很让人尴尬了==)。虽然在本科课程里有各式各样的方法绕过它,但是由于这个近似手段使用起来相当便捷,而且也几乎出现在所有的物理领域里,所以感觉还是有必要小小总结一下的(没错,逃的课总是要还的。犹豫,就会白给)。
一、数学基础
鞍点近似法是积分近似众多手段中相当强大的一种,它考虑的是如下复平面内的积分
当

现在我们试想对路径
这里的一次项被省略了,由于在鞍点我们有
首先我们先检验一下这个近似带来的误差。从(1.2)式我们知道这个高斯函数的宽大致为
那么有同学就会问了,怎么确定通过鞍点的方向(即最速下降方向)呢?这里我们可以利用复数的极坐标形式
现在再来看看