构造一条二次bezier曲线_那些处处连续,处处不可导的曲线

来源公众号:数学之美

链接:那些处处连续,处处不可导的曲线

01.魏尔斯特拉斯函数

数学家们早就知道,一个可导的函数必定是连续的,但反之不然。像y=|x|这样的函数,是处处连续的,它在x=0处突然改变方向,形成了一个拐角(尖点)。

然而,人们曾经认为,一个连续函数多半是“光滑”(可导)的。数学家安培对连续函数是可微的命题曾经提出过一个证明,在19世纪整个前半期,微积分教科书都支持这种见解。我们不难想象一副连续的“锯齿”状的图形,平滑地上升到一个齿角,再接着遇到另一个齿角,如此延续下去,当我们压缩“锯齿”时,得到越来越多不可导的点。尽管如此,似乎应该存在使函数图形从一个齿角平滑地上升或下降到另一个齿角的区间。几何图形似乎表明,任何连续函数必定存在大量可导的点。

15f11b6f6be27249d6f6eac08575fa24.png
魏尔斯特拉斯函数

当魏尔斯特拉斯构造出处处连续但无处可导的函数时,引起了巨大震惊。这是一个稀奇古怪的函数实体,它是连续的,确是处处不可导的。这个函数把几何直观作为微积分的可靠基础的主张逐出了历史舞台。

魏尔斯特拉斯(Weierstrass)是德国数学家,1815年生,1897年卒于柏林。魏尔斯特拉斯作为现代分析之父,工作涵盖:幂级数理论、实分析、复变函数、阿贝尔函数、无穷乘积、变分学、双线型与二次型、整函数等。 他的论文与教学影响了整个二十世纪分析学(甚至整个数学)的风貌。魏尔斯特拉斯以其解析函数理论与柯西、黎曼同为复变函数论的奠基人。

096de91a0fe8cdc6537c5ae8465514c0.png

为了说明直觉的不可靠,1872年7月18日魏尔斯特拉斯在柏林科学院的一次讲演中,构造了一个连续函数却处处不可微的例子,由此一举改变了当时一直存在的“连续函数必可导”的重大误解,震惊了整个数学界!这个例子推动了人们去构造更多的函数,这样的函数在一个区间上连续或处处连续,但在一个稠密集或在任何点上都不可微,从而推动了函数论的发展。

02.希尔伯特-皮亚诺曲线

1890年,意大利数学家皮亚诺(Peano G)发明能填满一个正方形的曲线,叫做皮亚诺曲线。

fa5fc55d5c5d9171b26700b2c5fa19f1.png
皮亚诺和他的 space filling curve

皮亚诺曲线(非希尔伯特曲线)构造方法如上图所示:取一个正方形并且把它分出9个相等的小正方形,然后从左下角的正方形开始至右上角的正方形结束,依次把小正方形的中心用线段连接起来;下一步把每个小正方形分成9个相等的正方形,然后上述方式把其中中心连接起来……将这种操作步骤无限次进行下去,最终得到的极限情况的曲线就可以填满整个平面。

用此方法最后所逼近的极限曲线,应该能够通过正方形内的所有的点,充满整个正方形。那就等于说:这条曲线最终就是整个正方形,就应该有面积!这个结论令当时的数学界大吃一惊。一年后,大数学家希尔伯特也构造了一种性质相同的曲线。

448809f0672dcdc7688014196284bf20.png
希尔伯特曲线

希尔伯特曲线是一种奇妙的曲线,只要恰当选择函数,画出一条连续的参数曲线,当参数t在[0,1]区间取值时,曲线将遍历单位正方形中所有的点,得到一条充满空间的曲线。希尔伯特曲线是一条连续而又不可导的曲线。

这类曲线的奇特性质令数学界不安:如此一来,曲线与平面该如何区分?对这种奇怪的几何图形,当时的经典几何似乎显得无能为力,不知道该把它们算作什么。

03.科赫曲线

尼尔斯·冯·科赫(Niels von Koch,1870—1924)是一位瑞典数学家,出生于瑞典一个显赫的贵族家庭。

在短短的54年生命中,冯·科赫写过多篇关于数论的论文。其中较突出的一个研究成果是他在1901年证明的一个定理,说明了黎曼猜想等价于素数定理的一个条件更强的形式。但是,他留给这个世界的最广为人知的成果,却是这个看起来不太起眼的小玩意儿,也就是此文中所介绍的以他名字命名的科赫曲线。

科赫在1904年他的一篇论文“关于一个可由基本几何方法构造出的、无切线的连续曲线”中,描述了科赫曲线的构造方法。

39ecb3f28f028528e483fa7df76ec31e.png
Koch 曲线的生成过程

科赫曲线是一种像雪花的几何曲线,所以又称为雪花曲线,是分形曲线中的一种。

科赫曲线可以由以下步骤生成:

  1. 给定一条线段,将线段分成三等份;
  2. 取三等分后的一边中间一段为边向外作正三角形,并把这“中间一段”擦掉;
  3. 再分别对图中每条线段重复1~2,画出更小的三角形后擦掉中间段;
  4. 将上述步骤进行无限次循环迭代,生成的极限曲线就是科赫曲线

这样做出来的科赫曲线有如下性质:

  1. 曲线任何处不可导,即任何地点都是不平滑的。
  2. 总长度趋向无穷大,曲线上任意两点沿边界路程无穷大。
  3. 面积是有限的。
  4. 产生一个匪夷所思的悖论:“无穷大”的边界,包围着有限的面积。

科赫曲线显然不同于欧氏几何学中的平滑曲线,它是一种处处是尖点,处处无切线,长度无穷的几何图形。

像皮亚诺曲线、希尔伯特曲线、科赫曲线这类奇怪的曲线,都是分形的特例,不同的迭代方法,可以形成各种各样不同的分形。自皮亚诺之后,科学家们对分形的研究形成一个新的几何分支,叫做“分形几何”。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值