张海鹏 [ 甘肃省-临夏回族自治州-永靖县 县级优课]
地区: 甘肃省 - 临 夏 - 永靖县
学校:永靖县第五中学 共1课时
信息技术应用 用计算机画函数图象">信息技术应用 用计算机… 初中数学 人教2011课标版 1教学目标
1、理解正比例函数的概念及正比例函数图象特征。
2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。
3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。
4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。
5、通过正比例函数图象的学习和探究,感知数形结合思想。
6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 2学情分析
1.通过实际情境引入,使学生认识到生活实例中有大量的函数模型,激发学生学习数学的兴趣.
2.培养学生热爱自然、热爱生活的优秀品质. 3重点难点
教学重点
1、正比例函数的概念。
2、探索正比例函数图形的形状,会画正比例函数图象
教学难点
正比例函数图象性质 4教学过程 4.1第一学时评论(0) 教学目标
1、理解正比例函数的概念及正比例函数图象特征。
2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。
3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。
4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。
5、通过正比例函数图象的学习和探究,感知数形结合思想。
6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 评论(0) 学时重点
1、正比例函数的概念。
2、探索正比例函数图形的形状,会画正比例函数图象 评论(0) 学时难点
正比例函数图象性质 教学活动 活动1【讲授】19.2.1 正比例函数
【教学过程】
一、问题与探究
2011年开始运营的京沪高速铁路全长1318千米。设列车的平均速度为300千米/时。考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?
1318÷300 = 4.4(时)
(2) 京沪高铁列车y(单位:千米)与运行时间t(单位:时)之间有何数量关系?
y=300t (0≤x≤4.4)(注意自变量的取值范围哦!)
(3)京沪高铁列车从北京南站出发2.5小时的行程后,是否已经过了距始发站1100千米的南京南站?
当t=2.5时,y=300×2.5=750 (千米)
这时列车尚未到达距始发站1100千米的南京南站。
二、讨论与思考
下列问题中的变量对应规律可用怎样的函数表示?
(1)圆的周长 l随半径r的大小变化而变化。
解: l=2πr
(2)铁的密度为7.8g/ cm3 ,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化。
解:m =7.8 V
(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度 h(单位:cm)随这些练习本的本数n的变化而变化。
解:h = 0.5n
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。
解:T = -2t
三、观察与发现
认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数。函数解析式常数自变量函数
(1)l=2πr2πrl
(2)m=7.8V7.8vm
(3)h=0.5n0.5nh
(4)T= -2t-2tT
以上这些函数有什么共同点?
这些函数都是常数与自变量的乘积的形式!
四、归纳与总结
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
这里为什么强调k是常数, k≠0呢?
做一做 下列函数是否是正比例函数?比例系数是多少?
(1)y=3x 是,比例系数k=3。
(2)y=2/x 不是。
(3)y=x/2 是,比例系数k=1/2。
(4)s=πr2 S 不是r的正比例函数,S是r2的正比例函数。
五、【自学指导】
1.阅读教材第87页例1,体会正比例函数的图象的画法并完成下题:
仿照例1中画函数y=2x的步骤,画出下列正比例函数的图象:
① y=1/2x ; ② y= -1/2x。
列表:x…-2-1012…
y=1/2x…-1-1/201/21…
x…-2-1012…
y=-1/2x…11/20-1/2-1…
描点,连线:
2. 比较例1和上面的两个图象,填写你发现的规律:
(1)四个图象都是经过原点___的直线。
(2)函数y= 2x 的图象经过第____象 限,从左向右 ____(呈什么趋势),即y随x的增大而__增大______;
(3)函数y= -2x的图象经过第____象限,从左向右__(呈什么趋势),即y随x的增大而__减小_____;
(4)函数的图象经过第____象限,从左向右____(呈什么趋势),即y随x的增大而____增大____;
(5)函数的图象经过第___象限,从左向右___(呈什么趋势),即y随x的增大而_____减小___;
3.k的正负对函数 (k≠0)的图象有什么影响?
六、总结新知识
一般地,正比例函数 y=kx (k是常数,k≠0) 的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。
想一想: 经过原点与(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
经过原点与(1,k)的直线是正比例函数y=kx (k是常数,k≠0)的图象,由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和点 (1,k),连线即可。
七、作业:习题19.2第1、2题。
板书设计:
19.2.1正比例函数1
1、画正比例函数的图象
2、正比例函数图象的特征
3、例题:
课后反思:
信息技术应用 用计算机画函数图象 课时设计 课堂实录
信息技术应用 用计算机画函数图象 1第一学时 教学目标
1、理解正比例函数的概念及正比例函数图象特征。
2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。
3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。
4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。
5、通过正比例函数图象的学习和探究,感知数形结合思想。
6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 学时重点
1、正比例函数的概念。
2、探索正比例函数图形的形状,会画正比例函数图象 学时难点
正比例函数图象性质 教学活动 活动1【讲授】19.2.1 正比例函数
【教学过程】
一、问题与探究
2011年开始运营的京沪高速铁路全长1318千米。设列车的平均速度为300千米/时。考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?
1318÷300 = 4.4(时)
(2) 京沪高铁列车y(单位:千米)与运行时间t(单位:时)之间有何数量关系?
y=300t (0≤x≤4.4)(注意自变量的取值范围哦!)
(3)京沪高铁列车从北京南站出发2.5小时的行程后,是否已经过了距始发站1100千米的南京南站?
当t=2.5时,y=300×2.5=750 (千米)
这时列车尚未到达距始发站1100千米的南京南站。
二、讨论与思考
下列问题中的变量对应规律可用怎样的函数表示?
(1)圆的周长 l随半径r的大小变化而变化。
解: l=2πr
(2)铁的密度为7.8g/ cm3 ,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化。
解:m =7.8 V
(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度 h(单位:cm)随这些练习本的本数n的变化而变化。
解:h = 0.5n
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。
解:T = -2t
三、观察与发现
认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数。函数解析式常数自变量函数
(1)l=2πr2πrl
(2)m=7.8V7.8vm
(3)h=0.5n0.5nh
(4)T= -2t-2tT
以上这些函数有什么共同点?
这些函数都是常数与自变量的乘积的形式!
四、归纳与总结
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
这里为什么强调k是常数, k≠0呢?
做一做 下列函数是否是正比例函数?比例系数是多少?
(1)y=3x 是,比例系数k=3。
(2)y=2/x 不是。
(3)y=x/2 是,比例系数k=1/2。
(4)s=πr2 S 不是r的正比例函数,S是r2的正比例函数。
五、【自学指导】
1.阅读教材第87页例1,体会正比例函数的图象的画法并完成下题:
仿照例1中画函数y=2x的步骤,画出下列正比例函数的图象:
① y=1/2x ; ② y= -1/2x。
列表:x…-2-1012…
y=1/2x…-1-1/201/21…
x…-2-1012…
y=-1/2x…11/20-1/2-1…
描点,连线:
2. 比较例1和上面的两个图象,填写你发现的规律:
(1)四个图象都是经过原点___的直线。
(2)函数y= 2x 的图象经过第____象 限,从左向右 ____(呈什么趋势),即y随x的增大而__增大______;
(3)函数y= -2x的图象经过第____象限,从左向右__(呈什么趋势),即y随x的增大而__减小_____;
(4)函数的图象经过第____象限,从左向右____(呈什么趋势),即y随x的增大而____增大____;
(5)函数的图象经过第___象限,从左向右___(呈什么趋势),即y随x的增大而_____减小___;
3.k的正负对函数 (k≠0)的图象有什么影响?
六、总结新知识
一般地,正比例函数 y=kx (k是常数,k≠0) 的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。
想一想: 经过原点与(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
经过原点与(1,k)的直线是正比例函数y=kx (k是常数,k≠0)的图象,由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和点 (1,k),连线即可。
七、作业:习题19.2第1、2题。
板书设计:
19.2.1正比例函数1
1、画正比例函数的图象
2、正比例函数图象的特征
3、例题:
课后反思:
Tags:信息,技术应用,计算机,函数,图象