用计算机绘制函数图象公开课,信息技术应用 用计算机画函数图象课件配套优秀公开课教案设计...

张海鹏   [ 甘肃省-临夏回族自治州-永靖县 县级优课]

地区: 甘肃省 - 临 夏 - 永靖县

学校:永靖县第五中学 共1课时

信息技术应用  用计算机画函数图象">信息技术应用  用计算机… 初中数学       人教2011课标版 1教学目标

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。

3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。

4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

5、通过正比例函数图象的学习和探究,感知数形结合思想。

6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 2学情分析

1.通过实际情境引入,使学生认识到生活实例中有大量的函数模型,激发学生学习数学的兴趣.

2.培养学生热爱自然、热爱生活的优秀品质. 3重点难点

教学重点

1、正比例函数的概念。

2、探索正比例函数图形的形状,会画正比例函数图象

教学难点

正比例函数图象性质 4教学过程 4.1第一学时评论(0) 教学目标

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。

3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。

4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

5、通过正比例函数图象的学习和探究,感知数形结合思想。

6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 评论(0) 学时重点

1、正比例函数的概念。

2、探索正比例函数图形的形状,会画正比例函数图象 评论(0) 学时难点

正比例函数图象性质 教学活动 活动1【讲授】19.2.1  正比例函数

【教学过程】

一、问题与探究

2011年开始运营的京沪高速铁路全长1318千米。设列车的平均速度为300千米/时。考虑以下问题:

(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?

1318÷300 = 4.4(时)

(2) 京沪高铁列车y(单位:千米)与运行时间t(单位:时)之间有何数量关系?

y=300t   (0≤x≤4.4)(注意自变量的取值范围哦!)

(3)京沪高铁列车从北京南站出发2.5小时的行程后,是否已经过了距始发站1100千米的南京南站?

当t=2.5时,y=300×2.5=750 (千米)

这时列车尚未到达距始发站1100千米的南京南站。

二、讨论与思考

下列问题中的变量对应规律可用怎样的函数表示?

(1)圆的周长 l随半径r的大小变化而变化。

解: l=2πr

(2)铁的密度为7.8g/ cm3 ,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化。

解:m =7.8 V

(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度 h(单位:cm)随这些练习本的本数n的变化而变化。

解:h = 0.5n

(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。

解:T = -2t

三、观察与发现

认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数。函数解析式常数自变量函数

(1)l=2πr2πrl

(2)m=7.8V7.8vm

(3)h=0.5n0.5nh

(4)T= -2t-2tT

以上这些函数有什么共同点?

这些函数都是常数与自变量的乘积的形式!

四、归纳与总结

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

这里为什么强调k是常数, k≠0呢?

做一做 下列函数是否是正比例函数?比例系数是多少?

(1)y=3x      是,比例系数k=3。

(2)y=2/x     不是。

(3)y=x/2     是,比例系数k=1/2。

(4)s=πr2      S 不是r的正比例函数,S是r2的正比例函数。

五、【自学指导】

1.阅读教材第87页例1,体会正比例函数的图象的画法并完成下题:

仿照例1中画函数y=2x的步骤,画出下列正比例函数的图象:

①   y=1/2x ;                 ②  y= -1/2x。

列表:x…-2-1012…

y=1/2x…-1-1/201/21…

x…-2-1012…

y=-1/2x…11/20-1/2-1…

描点,连线:

20150416110821158_23ec43a6-5b2d-4b14-ab59-b5a750f2e2ec.png

2.  比较例1和上面的两个图象,填写你发现的规律:

(1)四个图象都是经过原点___的直线。

(2)函数y= 2x 的图象经过第____象 限,从左向右 ____(呈什么趋势),即y随x的增大而__增大______;

(3)函数y= -2x的图象经过第____象限,从左向右__(呈什么趋势),即y随x的增大而__减小_____;

(4)函数的图象经过第____象限,从左向右____(呈什么趋势),即y随x的增大而____增大____;

(5)函数的图象经过第___象限,从左向右___(呈什么趋势),即y随x的增大而_____减小___;

3.k的正负对函数 (k≠0)的图象有什么影响?

六、总结新知识

一般地,正比例函数 y=kx (k是常数,k≠0) 的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。

想一想: 经过原点与(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

经过原点与(1,k)的直线是正比例函数y=kx (k是常数,k≠0)的图象,由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和点 (1,k),连线即可。

七、作业:习题19.2第1、2题。

板书设计:

19.2.1正比例函数1

1、画正比例函数的图象

2、正比例函数图象的特征

3、例题:

课后反思:

信息技术应用  用计算机画函数图象 课时设计 课堂实录

信息技术应用  用计算机画函数图象 1第一学时 教学目标

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会用描点法画正比例函数图象;进一步熟悉作函数图象的主要步骤。

3、根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象。

4、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

5、通过正比例函数图象的学习和探究,感知数形结合思想。

6、根据正比例函数的图象和解析表达式 y=kx(k是常数,k≠0)探索并理解其性质(k> 0或k<0时,图象的变化情况 ) 学时重点

1、正比例函数的概念。

2、探索正比例函数图形的形状,会画正比例函数图象 学时难点

正比例函数图象性质 教学活动 活动1【讲授】19.2.1  正比例函数

【教学过程】

一、问题与探究

2011年开始运营的京沪高速铁路全长1318千米。设列车的平均速度为300千米/时。考虑以下问题:

(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?

1318÷300 = 4.4(时)

(2) 京沪高铁列车y(单位:千米)与运行时间t(单位:时)之间有何数量关系?

y=300t   (0≤x≤4.4)(注意自变量的取值范围哦!)

(3)京沪高铁列车从北京南站出发2.5小时的行程后,是否已经过了距始发站1100千米的南京南站?

当t=2.5时,y=300×2.5=750 (千米)

这时列车尚未到达距始发站1100千米的南京南站。

二、讨论与思考

下列问题中的变量对应规律可用怎样的函数表示?

(1)圆的周长 l随半径r的大小变化而变化。

解: l=2πr

(2)铁的密度为7.8g/ cm3 ,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化。

解:m =7.8 V

(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度 h(单位:cm)随这些练习本的本数n的变化而变化。

解:h = 0.5n

(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。

解:T = -2t

三、观察与发现

认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数。函数解析式常数自变量函数

(1)l=2πr2πrl

(2)m=7.8V7.8vm

(3)h=0.5n0.5nh

(4)T= -2t-2tT

以上这些函数有什么共同点?

这些函数都是常数与自变量的乘积的形式!

四、归纳与总结

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

这里为什么强调k是常数, k≠0呢?

做一做 下列函数是否是正比例函数?比例系数是多少?

(1)y=3x      是,比例系数k=3。

(2)y=2/x     不是。

(3)y=x/2     是,比例系数k=1/2。

(4)s=πr2      S 不是r的正比例函数,S是r2的正比例函数。

五、【自学指导】

1.阅读教材第87页例1,体会正比例函数的图象的画法并完成下题:

仿照例1中画函数y=2x的步骤,画出下列正比例函数的图象:

①   y=1/2x ;                 ②  y= -1/2x。

列表:x…-2-1012…

y=1/2x…-1-1/201/21…

x…-2-1012…

y=-1/2x…11/20-1/2-1…

描点,连线:

20150416110821158_23ec43a6-5b2d-4b14-ab59-b5a750f2e2ec.png

2.  比较例1和上面的两个图象,填写你发现的规律:

(1)四个图象都是经过原点___的直线。

(2)函数y= 2x 的图象经过第____象 限,从左向右 ____(呈什么趋势),即y随x的增大而__增大______;

(3)函数y= -2x的图象经过第____象限,从左向右__(呈什么趋势),即y随x的增大而__减小_____;

(4)函数的图象经过第____象限,从左向右____(呈什么趋势),即y随x的增大而____增大____;

(5)函数的图象经过第___象限,从左向右___(呈什么趋势),即y随x的增大而_____减小___;

3.k的正负对函数 (k≠0)的图象有什么影响?

六、总结新知识

一般地,正比例函数 y=kx (k是常数,k≠0) 的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。

想一想: 经过原点与(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

经过原点与(1,k)的直线是正比例函数y=kx (k是常数,k≠0)的图象,由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和点 (1,k),连线即可。

七、作业:习题19.2第1、2题。

板书设计:

19.2.1正比例函数1

1、画正比例函数的图象

2、正比例函数图象的特征

3、例题:

课后反思:

Tags:信息,技术应用,计算机,函数,图象

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值