python线性加权模型_Python 线性分类模型简介

在这里,我提供了一个真正的线性分类实现代码,以及一个用scikit-learn对一张图片中的内容分类的例子。

4大参数化学习和线性分类的组件

我已经多次使用“参数化”,但它到底是什么意思?

简而言之:参数化是确定模型必要参数的过程。

在机器学习的任务中,参数化根据以下几个方面来确定面对的问题:

数据:这是我们将要学习的输入数据。这些数据包括了数据点(例如,特征向量,颜色矩阵,原始像素特征等)和它们对应的标签。

评分函数:一个函数接收输入数据,然后将数据匹配到类标签上。例如,我们输入特征向量后,评分函数就开始处理这些数据,调用某个函数f(比如我们的评分函数),最后返回预测的分类标签。

损失函数:损失函数可以量化预测的类标签与真实的类标签之间的匹配程度。这两个标签集合之间的相似度越高,损失就越小(即分类精度越高)。我们的目标是最小化损失函数,相应就能提高分类精度。

权重矩阵:权重矩阵,通常标记为W,它是分类器实际优化的权重或参数。我们根据评分函数的输出以及损失函数,调整并优化权重矩阵,提高分类精度。

数据:这是我们将要学习的输入数据。这些数据包括了数据点(例如,特征向量,颜色矩阵,原始像素特征等)和它们对应的标签。

评分函数:一个函数接收输入数据,然后将数据匹配到类标签上。例如,我们输入特征向量后,评分函数就开始处理这些数据,调用某个函数f(比如我们的评分函数),最后返回预测的分类标签。

损失函数:损失函数可以量化预测的类标签与真实的类标签之间的匹配程度。这两个标签集合之间的相似度越高,损失就越小(即分类精度越高)。我们的目标是最小化损失函数,相应就能提高分类精度。

权重矩阵:权重矩阵,通常标记为W,它是分类器实际优化的权重或参数。我们根据评分函数的输出以及损失函数,调整并优化权重矩阵,提高分类精度。

注意:取决于你使用的模型的种类,参数可能会多的多。但是在最底层,你会经常遇到4个参数化学习的基本模块。

一旦确定了这4个关键组件,我们就可以使用优化方法来找到评分函数的一组参数W,使得损失函数达到最小值(同时提升对数据的分类准确度)

接下来,我们就将看到如何利用这些组件,搭建一个将输入数据转化为真实预测值的分类器。

线性分类器:从图片到标签

在这部分中,我们将更多的从数学角度研究参数模型到机器学习。

首先,我们需要数据。假设训练数据集(图片或者压缩后的特征向量)标记为,每个图或特征向量都有对应的类标签 。我们用 和表示有N个D维(特征向量的长度)的数据点,划分到K个唯一的类别中。

为了这些表达式更具体点,参考我们以前的教程:基于提取后的颜色矩阵,使用knn分类器识别图片中的猫和狗。

这份数据集中,总共有N=25,000张图片,每张图片的特征都是一个3D颜色直方图,其中每个管道有8个桶。这样产出的特征向量有D=8 x 8 x 8 = 512个元素。最后,我们有k=2个类别标签,一个是“狗”,另一个是“猫”。

有了这些变量后,我们必须定义一个评分函数f,将特征向量映射到类标签的打分上。正如本篇博客标题所说,我们将使用一个简单的线性映射:

我们假设每个都由一个形状为[D x 1]的单列向量所表示。我们在本例中要再次使用颜色直方图,不过如果我们使用的是原始像素粒度,那可以直接把图片中的像素压扁到一个单列向量中。

我们的权重矩阵W形状为[K x D](类别标签数乘以特征向量的维数)

最后,偏置矩阵b,大小为[K x 1]。实质上,偏置矩阵可以让我们的评分函数向着一个或另一个方向“提升”,而不会真正影响权重矩阵W,这点往往对学习的成功与否非常关键。

回到Kaggle的猫和狗例子中, 每个都表示为512维颜色直方图,因此的形状是[512 x 1]。权重矩阵W的形状为[2 x 512],而偏置矩阵b为[2 x 1]。

下面展示的是线性分类的评分函数f

在上图的左侧是原始输入图片,我们将从中提取特征。在本例中,我们计算的是一个512维的颜色直方图,也可以用其他一些特征表示方式(包括原始像素密度),但是对于这个例子,我们就只用颜色分布,即直方图来表示xi。

然后我们有了权重矩阵W,有2行(每个类标签一行)和512列(每一列都是特征向量中的条目)

将W和xi点乘后,再加上大小为[2 x 1]的偏置矩阵bi。

最后就得到了右边的两个值:猫和狗标签各自的分数。

看着上面的公式,你可以确信输入xi和yi都是固定的,没法修改。我们当然可以通过不同的特征提取技术来得到不同的xi,但是一旦特征抽取后,这些值就不会再改变了。

实际上,我们唯一能控制的参数就是权重矩阵W以及偏置向量b。因此,我们的目标是利用评分函数和损失函数去优化权重和偏置向量,来提升分类的准确度。

如何优化权重矩阵则取决于我们的损失函数,但通常会涉及梯度下降的某种形式。我们会在以后的博客中重温优化和损失函数的概念,不过现在只要简单理解为给定了一个评分函数后,我们还需要定义一个损失函数,来告诉我们对于输入数据的预测有多“好”。

参数学习和线性分类的优点

利用参数学习有两个主要的优点,正如我上面详述的方法:

一旦我们训练完了模型,就可以丢掉输入数据而只保留权重矩阵W和偏置向量b。这大大减少了模型的大小,因为我们只需要存储两个向量集合(而非整个训练集)。

对新的测试数据分类很快。为了执行分类,我们要做的只是点乘W和xi,然后再加上偏置b。这样做远比将每个测试点和整个训练集比较(比如像knn算法那样)快的多。

一旦我们训练完了模型,就可以丢掉输入数据而只保留权重矩阵W和偏置向量b。这大大减少了模型的大小,因为我们只需要存储两个向量集合(而非整个训练集)。

对新的测试数据分类很快。为了执行分类,我们要做的只是点乘W和xi,然后再加上偏置b。这样做远比将每个测试点和整个训练集比较(比如像knn算法那样)快的多。

既然我们理解了线性分类的原理,就一起看下如何在python,opencv和scikit-learn中实现。

使用python,opencv和scikit-learn对图片线性分类

就像在之前的例子Kaggle 猫vs狗数据集和knn算法中,我们将从数据集中提取颜色直方图,不过和前面例子不同的是,我们将用一个线性分类器,而非knn。

准确地说,我们将使用线性支持向量机(SVM),即在n维空间中的数据之间构造一个最大间隔分离超平面。这个分离超平面的目标是将类别为i的所有(或者在给定的容忍度下,尽可能多)的样本分到超平面的一边,而所有类别非i的样本分到另一边。

关于支持向量机的具体描述已经超出本博客的范围。(不过在PyImageSearch Gurus course有详细描述)

同时,只需知道我们的线性SVM使用了和本博客“线性分类器:从图片到标签”部分中相似的评分函数,然后使用损失函数,用于确定最大分离超平面来对数据点分类(同样,我们将在以后的博客中讲述损失函数)。

我们从打开一个新文件开始,命名为linear_classifier.py,然后插入以下代码:

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

fromsklearn.metricsimportclassification_report

fromsklearn.cross_validationimporttrain_test_split

fromimutilsimportpaths

importnumpyasnp

importargparse

importimutils

importcv2

importos

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

fromsklearn.metricsimportclassification_report

fromsklearn.cross_validationimporttrain_test_split

fromimutilsimportpaths

importnumpyasnp

importargparse

importimutils

importcv2

importos

从第2行至11行导入了必须的python包。我们要使用scikit-learn库,因此如果你还没安装的话,跟着这些步骤,确保将其安装到你机器上。

我们还将使用我的imutils包,用于方便处理图像的一系列函数。如果你还没有安装imutils,那就让pip安装。

$ pip install imutils

$ pip install imutils

现在我们定义extract_color_histogram 函数,用于提取和量化输入图片的内容:

defextract_color_histogram(image,bins=(8,8,8)):

# extract a 3D color histogram from the HSV color space using

# the supplied number of `bins` per channel

hsv=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

hist=cv2.calcHist([hsv],[0,1,2],None,bins,

[0,180,0,256,0,256])

# handle normalizing the histogram if we are using OpenCV 2.4.X

ifimutils.is_cv2():

hist=cv2.normalize(hist)

# otherwise, perform "in place" normalization in OpenCV 3 (I

# personally hate the way this is done

else:

cv2.normalize(hist,hist)

# return the flattened histogram as the feature vector

returnhist.flatten()

defextract_color_histogram(image,bins=(8,8,8)):

# extract a 3D color histogram from the HSV color space using

# the supplied number of `bins` per channel

hsv=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

hist=cv2.calcHist([hsv],[0,1,2],None,bins,

[0,180,0,256,0,256])

# handle normalizing the histogram if we are using OpenCV 2.4.X

ifimutils.is_cv2():

hist=cv2.normalize(hist)

# otherwise, perform "in place" normalization in OpenCV 3 (I

# personally hate the way this is done

else:

cv2.normalize(hist,hist)

# return the flattened histogram as the feature vector

returnhist.flatten()

这个函数接收一个输入image ,将其转化为HSV颜色空间,然后利用为每个通道提供的bins,计算3D颜色直方图。

利用cv2.calcHist函数计算出颜色直方图后,将其归一化后返回给调用函数。

有关extract_color_histogram方法更详细的描述,参阅这篇博客(http://www.pyimagesearch.com/2016/08/08/k-nn-classifier-for-image-classification/)。

接着,我们从命令行解析参数,并初始化几个变量:

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

fromsklearn.metricsimportclassification_report

fromsklearn.cross_validationimporttrain_test_split

fromimutilsimportpaths

importnumpyasnp

importargparse

importimutils

importcv2

importos

defextract_color_histogram(image,bins=(8,8,8)):

# extract a 3D color histogram from the HSV color space using

# the supplied number of `bins` per channel

hsv=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

hist=cv2.calcHist([hsv],[0,1,2],None,bins,

[0,180,0,256,0,256])

# handle normalizing the histogram if we are using OpenCV 2.4.X

ifimutils.is_cv2():

hist=cv2.normalize(hist)

# otherwise, perform "in place" normalization in OpenCV 3 (I

# personally hate the way this is done

else:

cv2.normalize(hist,hist)

# return the flattened histogram as the feature vector

returnhist.flatten()

# construct the argument parse and parse the arguments

ap=argparse.ArgumentParser()

ap.add_argument("-d","--dataset",required=True,

help="path to input dataset")

args=vars(ap.parse_args())

# grab the list of images that we'll be describing

print("[INFO] describing images...")

imagePaths=list(paths.list_images(args["dataset"]))

# initialize the data matrix and labels list

data=[]

labels=[]

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

fromsklearn.metricsimportclassification_report

fromsklearn.cross_validationimporttrain_test_split

fromimutilsimportpaths

importnumpyasnp

importargparse

importimutils

importcv2

importos

defextract_color_histogram(image,bins=(8,8,8)):

# extract a 3D color histogram from the HSV color space using

# the supplied number of `bins` per channel

hsv=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

hist=cv2.calcHist([hsv],[0,1,2],None,bins,

[0,180,0,256,0,256])

# handle normalizing the histogram if we are using OpenCV 2.4.X

ifimutils.is_cv2():

hist=cv2.normalize(hist)

# otherwise, perform "in place" normalization in OpenCV 3 (I

# personally hate the way this is done

else:

cv2.normalize(hist,hist)

# return the flattened histogram as the feature vector

returnhist.flatten()

# construct the argument parse and parse the arguments

ap=argparse.ArgumentParser()

ap.add_argument("-d","--dataset",required=True,

help="path to input dataset")

args=vars(ap.parse_args())

# grab the list of images that we'll be describing

print("[INFO] describing images...")

imagePaths=list(paths.list_images(args["dataset"]))

# initialize the data matrix and labels list

data=[]

labels=[]

33行到36行解析命令行参数。我们这里只需要一个简单的开关,—dataset是kaggle 猫vs狗数据集的路径。

然后我们将25000张图片保存的磁盘位置赋值给imagePaths,跟着初始化一个data矩阵,存储提取后的特征向量和类别labels。

说到提取特征,我们接着这样做:

# loop over the input images

for(i,imagePath)inenumerate(imagePaths):

# load the image and extract the class label (assuming that our

# path as the format: /path/to/dataset/{class}.{image_num}.jpg

image=cv2.imread(imagePath)

label=imagePath.split(os.path.sep)[-1].split(".")[0]

# extract a color histogram from the image, then update the

# data matrix and labels list

hist=extract_color_histogram(image)

data.append(hist)

labels.append(label)

# show an update every 1,000 images

ifi>0andi%1000==0:

print("[INFO] processed {}/{}".format(i,len(imagePaths)))

# loop over the input images

for(i,imagePath)inenumerate(imagePaths):

# load the image and extract the class label (assuming that our

# path as the format: /path/to/dataset/{class}.{image_num}.jpg

image=cv2.imread(imagePath)

label=imagePath.split(os.path.sep)[-1].split(".")[0]

# extract a color histogram from the image, then update the

# data matrix and labels list

hist=extract_color_histogram(image)

data.append(hist)

labels.append(label)

# show an update every 1,000 images

ifi>0andi%1000==0:

print("[INFO] processed {}/{}".format(i,len(imagePaths)))

在47行,我们开始对输入的imagePaths进行遍历,对于每个imagePath,我们从磁盘中加载image,提取类别label,然后通过计算颜色直方图来量化图片。然后我们更新data和labels各自的列表。

目前,我们的labels是一个字符串列表,如“狗”或者“猫”。但是,很多scikit-learn中的机器学习算法倾向于将labels编码为整数,每个标签有一个唯一的数字。

使用LabelEncoder类可以很方便的将类别标签从字符串转变为整数:

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

# import the necessary packages

fromsklearn.preprocessingimportLabelEncoder

fromsklearn.svmimportLinearSVC

调用了 .fit_transform方法后,现在我们的labels表示为整数列表。

代码的最后一部分将数据划分为训练和测试两组、训练线性SVM、评估模型。

# partition the data into training and testing splits, using 75%

# of the data for training and the remaining 25% for testing

print("[INFO] constructing training/testing split...")

(trainData,testData,trainLabels,testLabels)=train_test_split(

np.array(data),labels,test_size=0.25,random_state=42)

# train the linear regression clasifier

print("[INFO] training Linear SVM classifier...")

model=LinearSVC()

model.fit(trainData,trainLabels)

# evaluate the classifier

print("[INFO] evaluating classifier...")

predictions=model.predict(testData)

print(classification_report(testLabels,predictions,

target_names=le.classes_))

# partition the data into training and testing splits, using 75%

# of the data for training and the remaining 25% for testing

print("[INFO] constructing training/testing split...")

(trainData,testData,trainLabels,testLabels)=train_test_split(

np.array(data),labels,test_size=0.25,random_state=42)

# train the linear regression clasifier

print("[INFO] training Linear SVM classifier...")

model=LinearSVC()

model.fit(trainData,trainLabels)

# evaluate the classifier

print("[INFO] evaluating classifier...")

predictions=model.predict(testData)

print(classification_report(testLabels,predictions,

target_names=le.classes_))

70和71行构造了训练集和测试集。我们将75%的数据用于训练,剩下的25%用于测试。

我们将使用scikit-learn库实现的LinearSVC(75和76行)来训练线性SVM。

最后,80到82行评估我们的模型,显示一个格式整齐的报告,来说明模型的执行情况。

需要注意的一点是,我故意没有进行调参,只是为了让这个例子简单,容易理解。不过,既然提到了,我就把LinearSVC 分类器的调参作为练习留个读者。可以参考我以前的k-NN分类器调参博客。

评估线性分类器

为了测试我们的线性分类器,确保你已经下载了:

1. 本博客中的源代码,可以使用教程底部的“下载”部分。

2. kaggle 猫vs狗数据集

有了代码和数据集之后,你可以执行如下命令:

$ python linear_classifier.py --dataset kaggle_dogs_vs_cats

$ python linear_classifier.py --dataset kaggle_dogs_vs_cats

特征提取过程大约要花费1-3分钟不等,具体时间根据机器的速度。

之后,训练并评估我们的线性SVM:

正如上图所示,我们的分类精度有64%,大致接近本教程中调参后的knn算法精度。

注意:对线性SVM调参可以得到更高的分类精度,为了使教程稍微短一点,而且不至于太复杂,我简单地省略了这个步骤。

此外,我们不仅得到了和knn相同的分类精度,模型的测试时间也快的多,只需要将权重矩阵和数据集进行点乘(高度优化后),然后是一个简单的加法。

我们也可以在训练完成后丢弃训练集,只保留权重矩阵W和偏置向量b,从而大大精简了模型表示。

总结

在今天的博客中,我讨论了参数学习和线性分类的基础概念。虽然线性分类器比较简单, 但它被视为更多高级的机器学习和深度学习算法的基石,并能很自然地扩展到神经网络和卷积神经网络中。

你看,卷积神经网络可以将原始像素映射到类别标签,类似于我们在本教程中所作的那些,只是评分函数f更复杂,并且参数更多。

参数学习的一大好处就是可以在训练完毕之后,丢弃原训练数据。我们可以只用从数据中学到的参数(比如,权重矩阵和偏置向量)来进行分类。

这使得分类变得非常高效,因为(1)我们不需要像knn那样在模型中存储一份训练数据的拷贝(2)我们不用将测试图片一个一个的和训练图片进行比较(一个O(N)的操作,并且当数据集很大时就变得非常麻烦)

简而言之,这个方法明显更快,只需一个简单的点乘和加法。非常简洁,不是吗?

最后,我们在kaggle 狗vs猫的数据集上,利用Python, OpenCV, 和 scikit-learn进行线性分类。从数据集提取出颜色直方图之后,我们在特征向量上训练一个线性支持向量机,并且得到64%的分类精度,这已经很不错了,因为(1)颜色直方图并非狗和猫特征化的最佳选择(2)我们没有对线性SVM进行调参。

到这里,我们开始理解了构建神经网络、卷积神经网络和深度学习模型的基本模块,但还有很长一段路要走。

首先,我们需要更详细地了解损失函数,特别是如何使用损失函数来优化权重矩阵以获得更准确的预测。 未来的博客文章将更详细地介绍这些概念。

关注「大数据与机器学习文摘」,成为Top 1%

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 加权图连通划分问题是指将一个加权无向图分成若干个连通块,使得每个连通块的权值之和最小。这个问题可以建立混合整数线性规划模型来求解。 假设有一个无向图G=(V,E),其中V={1,2,…,n}表示节点集合,E表示边集合。每条边e=(i,j)都有一个权值w(e)。假设图G有k个连通块,我们用一个01变量$x_{ij}$表示节点i和节点j是否在同一个连通块中。用一个整数变量$y_i$表示节点i所在的连通块编号。则可以建立如下的混合整数线性规划模型: 目标函数:minimize $\sum_{e\in E} w(e) \cdot x_{ij}$ 约束条件: 1. 每个节点i都必须属于一个连通块:$\sum_{j\in V} x_{ij} = 1, \forall i\in V$ 2. 连通块的数量必须等于k:$\sum_{i\in V} [y_i=j] = k, \forall j=1,2,...,k$ 3. 连通块的编号必须是连续的自然数:$y_1 \leq y_2 \leq ... \leq y_n$ 4. 连通块内的节点必须相互连通:$x_{ij} \leq \sum_{l\in S} x_{il}, \forall i\in V, \forall j\in V-S, S\subseteq V, i\in S, j\notin S$ 5. $x_{ij}$和$y_i$都是0或1:$x_{ij},y_i \in \{0,1\}, \forall i\in V, \forall j\in V$ 其中,约束条件4是连通性约束,它表示如果节点i和节点j在同一个连通块中,那么它们之间必须有至少一条路径。如果这个约束条件不满足,那么这个连通块就不是连通的。 这个问题可以用Python的PuLP模块进行求解,代码如下: ``` python from pulp import * # 构建模型 model = LpProblem("Weighted Graph Partition", LpMinimize) # 定义变量 x = LpVariable.dicts("x", [(i, j) for i in range(1, n+1) for j in range(i+1, n+1)], cat=LpBinary) y = LpVariable.dicts("y", [i for i in range(1, n+1)], lowBound=1, upBound=k, cat=LpInteger) # 定义目标函数 model += lpSum([w[(i, j)] * x[(i, j)] for i in range(1, n+1) for j in range(i+1, n+1)]) # 定义约束条件 for i in range(1, n+1): model += lpSum([x[(i, j)] for j in range(i+1, n+1)]) == 1 for j in range(1, k+1): model += lpSum([y[i] == j for i in range(1, n+1)]) == 1 for i in range(1, n+1): for j in range(i+1, n+1): model += x[(i, j)] <= lpSum([x[(i, l)] for l in range(1, n+1) if l != j]) model += x[(i, j)] <= lpSum([x[(j, l)] for l in range(1, n+1) if l != i]) for i in range(1, n+1): model += y[i] >= y[max([j for j in range(1, i) if (j, i) in E]+[0])] # 求解模型 model.solve() # 输出结果 for i in range(1, n+1): print("Node %d is in partition %d" % (i, value(y[i]))) ``` 其中,w是一个字典,表示边的权值;E是一个边的集合,每条边用一个二元组表示。在求解模型之前,需要将w和E从原始的数据结构转换成字典的形式。 ### 回答2: 利用Python加权图的连通划分混合整数线性规划模型,可以通过以下步骤实现: 1. 定义决策变量: - 设定一个二进制变量x[i, j],表示节点i和节点j是否连通,其中i和j分别表示图中的节点。 - 设定一个连续变量y[i],表示节点i的划分标志,用于区分不同的连通分量。 2. 定义目标函数: - 构建目标函数,权重之和最小化或距离之和最小化,即minimize sum(weights[i, j]*x[i, j])或minimize sum(distances[i, j]*x[i, j]),其中weights[i, j]表示节点i和节点j之间的权重或距离。 3. 定义约束条件: - 确保每个节点都被划分到唯一的连通分量中,即sum(x[i, j] for j in nodes) = 1,其中nodes表示图中的所有节点。 - 确保节点i和节点j连通的约束条件,即y[i] - y[j] + nx[i, j] >= 0,其中nx[i, j]表示节点i和节点j连通的二进制变量。 4. 设置决策变量的类型: - 定义x[i, j]为二进制变量,即x[i, j] in {0, 1}。 - 定义y[i]为连续变量。 5. 调用线性规划库进行求解: - 导入线性规划库(如PuLP、Gurobi等)。 - 定义模型对象。 - 添加目标函数和约束条件。 - 指定求解方法和求解参数。 - 求解模型并获取最优解。 利用Python编程语言,可以使用PuLP进行线性规划模型的建模和求解。首先,需要导入PuLP库,然后按照以上步骤建立模型,设置变量的类型,并添加目标函数和约束条件。接下来,指定求解方法和求解参数,最后调用求解器进行求解。最优解可以通过访问变量的值属性来获取。 以上是利用Python加权图的连通划分混合整数线性规划模型的简要介绍。具体的实现过程可能因具体问题而有所不同,可以根据具体情况进行调整和扩展。 ### 回答3: 加权图的连通划分问题是在一个加权无向图中,找到一种划分方式,使得划分后的子图之间的边权重之和最小。而混合整数线性规划模型可以用来解决这个问题。 首先,我们定义一个布尔变量x,表示图中的每个结点是否被划分到划分集合S。如果x=1,则该结点在S中;如果x=0,则该结点在剩余的结点集合中。 接下来,我们定义一个整数变量y(i,j),表示边(i,j)的连通情况。如果边(i,j)跨越划分集合S和剩余集合,则y(i,j)=1;否则,y(i,j)=0。 然后,我们可以用如下的目标函数来表示最小化划分集合S和剩余集合之间边权值之和: min ∑w(i,j) * y(i,j) 其中(i,j)表示图的边,w(i,j)表示边(i,j)的权重。 需要满足的约束条件有: 1. 每个结点必须被划分到一个集合中:∑x(i) = 1,其中i表示图中的每个结点。 2. 边的连通性:y(i,j) ≥ x(i) - x(j),表示若边(i,j)跨越划分集合与剩余集合,则y(i,j)=1。 3. 集合S的规模限制:∑x(i) ≤ |V|/2,其中|V|表示图的结点数。 最后,使用python的优化库,将该问题转化为线性规划问题,利用求解器求解该线性规划问题,得到最优解。 总之,利用python可以建立加权图的连通划分混合整数线性规划模型,通过求解器得到图的最优划分方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值