机器学习框架_【帮推】FedML联邦机器学习框架开源!

FedML是由USC、MIT等机构联合发布的联邦学习开源框架,旨在促进多样化算法的开发和公平性能比较。支持分布式、移动设备及仿真训练,提供全面基准数据集。FedML团队在NeurIPS 2020发表多篇论文,展示其学术影响力,现正招募开源志愿者。
摘要由CSDN通过智能技术生成

7bc594f0f77734ff43c0902086860bca.png

Federated Learning (联邦学习) 是机器学习领域中快速发展的研究领域。尽管已经进行了大量的研究工作,但是现有的软件框架不能充分支持多样化的算法开发(例如,多样化的拓扑和灵活的消息交换),并且实验中不一致的数据集和模型使用使公平的比较变得困难。

近日,美国南加州大学USC联合MIT、Stanford、MSU、UW-Madison、UIUC以及腾讯、微众银行等众多高校与公司联合发布了FedML联邦学习开源框架。 FedML是一个开放的研究库和基准,可促进新的联合学习算法的开发和公平的性能比较。

FedML支持三种计算范例,以便用户在不同的系统环境中进行实验:

  • 分布式训练
  • 移动设备训练
  • 独立仿真

FedML还通过灵活且通用的API设计和参考基准实现促进了各种算法研究。针对非I.I.D设置的精选且全面的基准数据集旨在进行公平的比较。相信FedML可以为联合学习研究社区提供开发和评估算法的有效且可重复的手段。

FedML团队欢迎研究人员或工程师使用FedML库,并随时反馈不恰当的设计。更多信息大家可以查阅以下资料:

  • FedML Homepage: https://fedml.ai
  • FedML White Paper: https://arxiv.org/abs/2007.13518
  • FedML GitHub: https://github.c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值