python plot函数_如何用Python书写计算任一函数任一点的导数?

3af350e6044359cc5e193d34dece5b29.png

文 | 菊子皮 (转载请注明出处) 同名B站:AIAS编程有道

「摘要:」  本文首先回顾了导数的基本概念,然后初步书写了计算函数导数的程序函数,并根据计算机特点对函数进行了改进以达到工程实现。

「关键词:」 导数、工程实现

「本文默认你对导数有一定了解,所介绍的函数默认是可导的。」

前言

在人工智能领域,深度学习相关研究一直在如火如荼地进行着。基本上所有的深度学习算法的都使用了反向传播(Backpropagation, BP)算法。在反向传播中更新参数的过程中少不了的一步就是计算梯度值,计算梯度值少不了对函数进行求导计算某点的导数。用了那么多高大上算法框架,如何用Python书写计算任一函数任一点的导数?可能就没有多少人知道了,如果让你去解决这个问题你该怎么办?

1 导数回顾

简单地说导数就是某个瞬间的变化量。例如汽车的加速度就是速度对时间的导数。即:

如果这个你都忘了,就去搜一搜吧。导数的数学定义式如下:

即函数f(x)关于x的导数。

2 程序初实现

有了上面的公式,你会感觉用Python实现就很简单了,我们先使用以下方式实现,这种方式称为数值微分(numerical differentiation近似求解函数的导数)

def numerical_diff_or(f, x):
    """
    对函数f在点x处求导
    f:一个函数
    x:函数定义域内一个点
    """
    h = 1e-50
    return (f(x + h) - f(x))/h

看起来是不是很简单。参数说明:第一个参数f即:需要求导的函数,第二个参数x为:需要x点上计算导数。但是上面的书写存在几个需要改进的地方。

  1. 在实际工程实现中,计算机保留浮点数是有精度限制的,并且存在舍入误差,如下:

    print(np.float32(1e-50))
    print(np.float64(1e-50))

    输出的结果分别为:0.0,1e-50,当选择使用np.float64存储数据的话会占用较大的内存,而使用np.float32保存数据时最终会使用0.0计算,显然不是我们想要的。其实我们选用一个相对比较小的数字即可然后使用另一种方式计算也会得到一个近似的结果,这里我们先选择1e-10

  2. 如下图,因为计算不能保存无限接近于0的数字,也必然存在误差。为了减少这个误差,一种改进的计算方式是计算f在(x + h)和(x-h)之间的差分。由于这种方法计算式以x为中心,计算它左右两边的差分,所以也称为「中心差分」

d127e0679a0d91f4119020d00f0ccc46.png改进后的代码如下:

def numerical_diff(f, x):
    """
    对函数f在点x处求导
    f:一个函数
    x:函数定义域内一个点
    """
    h = 1e-10
    return (f(x + h) - f(x-h))/(2*h)

3 一个数值微分案例

现在我们创建一个函数如下:

本实验所需Python包如下:

import numpy as np
import matplotlib.pyplot as plt

对应的Python代码如下:

def function_1(x):
    """
    一个测试函数
    x:自变量
    """
    return 0.1*x + 0.01*x**2 + 0.001*x**3

来看看原函数是什么样子的:(已导入相关matplotlib.pyplot 和 numpy包)

x = np.arange(0, 20, 0.1)
y = function_1(x)


def plot_func1():
    """
    绘制函数function_1()图形
    """
    plt.xlabel('x')
    plt.ylabel('$f(X)$')
    plt.plot(x, y)
    plt.show()

plot_func1()

763139406dcc5c181090e1c7d7753846.png现在我们分别计算x=5, x=10处的导数如下:

print(numerical_diff(function_1, 5))
print(numerical_diff(function_1, 10))

「结果分别为」:0.275000022753602、0.6000000496442226 f(x)的导数如下严格来说是这样的:

我们再将x=8,x=16带入上式计算

def func1_diff(x):
    """
    func1函数严格导数
    """
    print(0.1+0.02*x+0.003*x**2)


func1_diff(5)
func1_diff(10)

「结果分别为:」 0.275、0.6000000000000001。虽然严格来说还是有一定不同,但是两者相比误差已经非常非常小了,基本上可以认为是相等的了。在对应点绘制的切线如下图:04cbc5b281c9f41ab9a611fe3a3502a7.png对应源码如下:

def plot_tangent(ax, x, y, x0):
    """
    使用numerical_diff()计算得到的导数值绘制切线
    """
    # 绘制原数据
    ax.set_xlabel('x')
    ax.set_ylabel('$f(X)$')
    ax.plot(x, y)
    y0 = function_1(x0)                 # 计算切点坐标
    k = numerical_diff(function_1, x0)  # 得到斜率,即导数值
    # 设置坐标轴范围
    ax.set_ylim(0, function_1(12))
    ax.set_xlim(0, 12)
    # 绘制切线所需的点
    y_diff = k*(x-x0) + y0
    # 绘制图形
    ax.plot(x, y_diff)
    # 绘制切点垂线
    ax.vlines(x0, 0, y0, linestyle="--")
    ax.hlines(y0, 0, x0, linestyle="--")
    # 设置图标题
    ax.set_title("the  tangent of $x_0$={}".format(x0))


fig, axes = plt.subplots(1, 2, figsize=(12, 6))
for x0, ax in zip([5, 10], axes):
    plot_tangent(ax, x, y, x0)

plt.show()

4 总结

综上感觉不难,但是需要注意细节。

df6323c5f99a12fe6092229801e0034d.gif

7293c961c36769bee968f663f0f017bd.png

7c1997003e093a1619e15fcd49e51912.gif

剑指Offer刷题集| Python基础

2ae28ba70591b2ba5dc2fce94086c489.png

更多精彩文章

一个绘制决策树的工具——graphviz,但你忽视了它的其他功能,如结构句法分析结果!

知道线性回归,但你知道什么是岭回归(Ridge Regression)和LASSO回归吗?

VSCode再添新功能——绘制流程图,来看看如何操作吧!

如何批量安装和导出Python项目的依赖库?

如何解决下载Github源码慢的问题

分类算法其实也可做回归分析——以knn为例

K近邻(knn)算法是如何完成分类的?

sklearn机器学习入门案例——使用k近邻算法进行鸢尾花分类

一本不错的Python书籍推荐给你

kmeans聚类以及kmeans应用——图片压缩 案例

Python中的迭代器和生成器

最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

LaTeX中设置字体颜色的三种方式

机器学习模型优化案例

5d7c9022b09103da210ae5f793b92d18.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值