python pytorch自定义_Pytorch 实现自定义参数层的例子

本文介绍了如何在Pytorch中实现自定义的Linear、Reshape和LinearWise层,包括初始化、前向传播和权重初始化。这些示例有助于理解自定义模块的创建,并提供了可导操作的实现。
摘要由CSDN通过智能技术生成

注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递。

官方Linear层:

class Linear(Module):

def __init__(self, in_features, out_features, bias=True):

super(Linear, self).__init__()

self.in_features = in_features

self.out_features = out_features

self.weight = Parameter(torch.Tensor(out_features, in_features))

if bias:

self.bias = Parameter(torch.Tensor(out_features))

else:

self.register_parameter('bias', None)

self.reset_parameters()

def reset_parameters(self):

stdv = 1. / math.sqrt(self.weight.size(1))

self.weight.data.uniform_(-stdv, stdv)

if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

def forward(self, input):

return F.linear(input, self.weight, self.bias)

def extra_repr(self):

return 'in_feature

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值