二元一次函数最值问题_考场碰到“二元分式型的条件最值问题”怎么破

重要提醒:6月7日-6月10日教学考试杂志订阅号微信公众平台特邀名师对2019年高考真题进行深度解析,与您相约,不见不散~

编者按

对于“二元分式型的条件最值问题”尹老师以“超级全能生”全国卷26省3月联考试题为素材来源,结合联考数据分析,在解法及变式角度做了较深刻的延展,对类型题的掌握及变式教学在应用中的启示均起到一定点拨。今天一起跟大家分享尹老师的分析历程,也期待更多老师基于类型题或变式教学相关研究与我们共同探讨,发表自己的见解!

放飞思维 精彩纷呈——“超级全能生”全国卷26省3月联考乙卷理科第15题探析与教学启示

山东 尹承利

“超级全能生”3月联考成功举行,通过联考及时检测了学生复习备考的情况。在试卷中许多蕴涵丰富数学思维价值的试题,本文根据数学全国乙卷理科第15题的考情及所潜在的思维功能、应用功能及拓展功能作如下探析。

一、试题呈现

064a31cdcb7c0d0ca2736649a3c72725.png

二、考情分析

这是一道有着深度思维背景的考题,从考试成绩分析的数据看,该题平均得分率、区分度均偏低,由下表可窥见一斑。

c59a6eaf16f87b16c44a5388114996fa.png

由于是填空题,我们无法从学生卷面去找到学生答题不理想的原因!但我们可以试着从试题本身的结构形式和思维量等视角略作剖析:

1.该题难度大,体现在该题的是“二元分式型的条件最值”问题,并由此使得变形、整理过程冗繁,运算量大,技巧性强.因而大多数的学生“望题生畏”、“望题兴叹”,出现解答的畏难情绪或不敢涉猎该题的情况也就不足为怪了!

3572e1c34d628645d73b142993b1fb9c.png

2.难道说该试题就不可取吗?恰恰相反,该题是一道能充分考査学生思维能力的优质试题.命题老师设置精当、颇具匠心.那是什么原因导致这样的局面呢?个人认为,问题还是出在备考上,就该题而言,在备考方面无论是学生的知识和方法的积累、储备,还是学生应对思维量大的问题,分析问题的背景、将问题转化处理的能力等都还是有所欠缺的,当遇到情景相对新一些的问题就不知所措、束手无策了.其实,解答本题时,消元→化为一元函数式→利用单调性求解;或者,代换“1”→待求式通分整理→齐次化→分离常数→直接运用基本不等式,或换元后运用基本不等式,或转化为一元二次方程用判别式求解,这两方面的途径都纯属再正常不过的解题思路.至于学生作答的这么不理想.不能不说是有些遗憾的,这也为我们后面冲刺阶段的备考敲响了警钟,理应引起教师的重视。

三、解法探析

为发挥该试题的最大效益,特从不同的视角给出解答该题的思维分析和几种不同的解法,供参考。

1.思维分析

解答该题如何寻找切入点呢?条件式是整式和的形式,结论式是分式和的形式.在求最值的一些常用方法中,比如利用二次函数的最值、三角函数的最值、基本不等式等求最值,依据目标式的结构特点,我们首要想到的是运用基本不等式,这样就初步确定求解该题的基本方向,当然也可能会有其他的方法.其次,从条件式2a+b=1获得的信息可大致有两种具体求解的路径:一是消元,转化为一元问题求解,根据变形、转化待求分式的情况或利用单调性,或利用基本不等式;二是,由于待求分式第二项的分母中有“1”这就暗示可以进行“1”的代换.“1”的代换后就将分式化为了齐次式,进而或通分并分离常数,或换元转化,变形出基本不等式的结构求解。

d8cf0b9cc369e5112a453257821c5529.png

2. 解法赏析

586dec7814faea5b10d7547d55603d79.png
c353564e3f2c49a47e2420b78095d71b.png
2bd76e08b9f928b5941796f28beb8574.png

【点评】该解法将目标式整理为关于a,b的二次齐次分式后,分离常数,进而转化为运用基本不等式的结构形式求解,技巧性较强。

88d831ebbb2ce72bef9c9d812e7f8a16.png

【点评】对于通过“常值代换”转化成两项一元齐次分式和的一类二元条件最值问题,利用双变量换元法求解十分奏效。

f40672250ced8be94f55e6a65531c75e.png

【点评】该解法把目标式变形整理作比后,再换元化为关于新元的一元二次方程,利用判别式法求解。

3cd4903656e50adb7208375518879f51.png

【点评】该解法通过消元,化为关于a的一元函数式,求导利用单调性求解。这也是求解二元条件最值问题常用的一条途径。

四、问题变式

096572f2637090495e8c5bd8a6090a21.png

俗话说:铁打的盘,流水的兵。高考中不变的是知识,变化的是情景的呈现形式和问题的结构方式。这就要求我们面对典型的数学问题时,能突破常规,多做变式工作,使学生做一个题,会一类题、一串题。

仅仅改变一下问题的条件式的背景,可有变式1~4

bc614495e6880d44b8c6966d301a74df.png
438489a661571f9bb838c25b62d8e533.png
482718fe14dc326b41fe2f504fcf133d.png
380903ea24a5b345ab3da8e115d1cc74.png
0f8a5c4f45d40fe897ff2bd67610363c.png

问题的条件式不变,改变待求的分式的形式,可有变式5

d557da4de5cbbc2bd979d58907cdb7ee.png

注:本题是将目标式化为两个一次齐次分式和的形式后,利用双变量换元,转化为基本不等式的结构求解的。

既稍加改变条件式,同时又改变待求的分式,可有变式6

276fe2a39d5a704dd22710d44e7aa194.png
8a0c3930df6974c9c807487d78323d07.png
a6f1a57328597eae71fd0fb7b5abe4e3.png
6fb346bbb8487ff03039d52e28d19b8d.png

将问题中的条件式是“和的形式”,目标式是“积的形式”,从而联想到基本不等式,采用“1的代换”,把目标转化为一次齐次分式后,进行双变量换元,问题得以解决。

将问题中的条件等式换为不等式,同时改变待求的分式,可有变式8

d81b935724d9bc6c37adb878b714c223.png

注:本变式的条件是不等关系式,应特别注意换元后新元的范围跟进。本题解法中进行了两次换元,最后转化构造出基本不等式的结构形式求解。

若进一步强化条件,将问题中的条件等式加强为不等式,同时改变待求的分式,可有变式9.

85817539e16efea4e45828572091a892.png
bc231d98a189e269cc1033cd03a0c5ce.png

注:首先分析出条件中的不等式与待求式在结构上的联系,然后进行代换,构造出基本不等式的结构,利用基本不等式放缩求解。运用放缩技巧时,要注意放或缩的一致性,并且特别注意各步的放缩是否可以同时取得等号。

二元条件最值问题,不止是“分式型”,在高考或各地模拟题,或是各类竞赛题中“整式型”的问题也常出现,结合联考题化为二次齐次式的式子,这里可有变式10.

abde28a3acf14f14506ac3ac896a6bc5.png

五、题型规律

二元函数的条件最值问题.因其注重考查考生的综合思维能力,具有很好的区分功能,能够很好地考查学生的数学思维能力,一直备受命题者的青睐.此类问题求解时往往技巧性特别强,学生不易掌握。储存、掌握这类问题的模式和解决的方法是解答的关键。

根据问题的结构特征,解答二元函数的条件最值这类问题所用的数学思想是:常量(“1”)代换和齐次化:所用的方法途径通常有三个:

①将函数式变形转化后,直接利用基本不等式,如联考题解法1;

②将函数式变形转化后,消元转化为一元函数利用基本不等式或函数的单调性,如联考题解法4;

③将函数式变形转化后,换元,利用基本不等式求解,如联考题解法3,或转化为一元二次不等式利用判别式工具求解,如联考题解法2;其中换元又分为单变量换元,如变式10的解法,双变量换元,如联考题解法2.

六、教学启示

如何利用“变式教学”来促进学生数学核心素养的形成和发展,是当前数学教学研究的重要课题,也是《普通高中数学课程标准》的要求,为此《教学考试》为教师们提供了一个良好地展示自我的平台,我们应怀有一颗虔诚的心,顺势而为。

9dd6410c1ffeaa86f74f0f01f0d3fb1a.png

1.数学问题的¨变式教学”,不能仅仅满足让学生掌握几种解题方法.更重要的是着眼于学生的进一步发展,通过各种方法的对比教会学生如何挖掘问题条件蕴含的内容学会看准目标,优化解题思路.当然,过程体会与循序而导对于学生的思维品质提高、解法自然生成也有决定性的作用。我们在关注解法的同时,更让学生经历“如何想到这样解”的思路历程.这样的话.解题的思想方法才会得到较充分的落实.

2.英国数学家怀特·海德说过:“数学是从模式化的个体作抽象的过程中对模式的研究.”罗增儒教授也说过:“学习数学的过程中,所积累的知识经验经过加工,会得出有长久保存价值或基本重要性的典型结构与重要题型——模式,将其有意识地记忆下来.当遇到一个新问题时,我们辨认它属于哪一类基本模式,联想起一个已解决问题以此索引,在记忆存储中抽取相应的方法来解决,这就是模式识别的解题策略。”如果学生对平时的问题善于总结、积累,那么在以后的解题中,就可以迅速地把新问题转化为已掌握的类型。其实,本题的解法中“1”的代换,就是源自于基本不等式应用的基本模式:“已知ax+by=m(a,b,x,y均为正数)

8094e9cb599a65b4b7bb92151855ffa6.png

频出现的题型,通过“1”的传递,架设起已知与待求之间的沟通桥梁,最终使问题得解。

3.章建跃教授认为真正的数学题“应满足一些基本条件,例如,反映数学本质,与重要的数学概念和性质相关,不纠缠于细枝末节,体现基础知识的联系性,解题方法自然、多样,具有发展性,表述简洁、流畅且好懂,等等”对于问题的“变式教学”,如何添置生成,如何整合创新,如何为学生设计思路台阶,如何体现课改下考核的评价功能、导向功能及选拔功能都值得思考.问题的“变式教学”必须在对原题的深入研究的基础上进行问题的重新整合创新,必须有利于学生的思维发展,既不能变式成超级难题,又不能变式成眼就明的胡猜题问题的变式既要有思维含量,更要有定的灵活性,有一定的探究梯度,这样才能真正考出学生的思维层次、拉开距离。

(作者单位:山东省泰安英雄山中学)

本文选自:《教学考试》杂志 2018年第五期 数学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值