一、积分变换的概念
积分变换是通过积分运算将一个函数(原函数)转化为另一个函数(像函数)的数学工具,其核心思想是通过变换域(如从时域到频域)简化数学问题(如微分方程、卷积运算等)的求解。常见的积分变换包括傅里叶变换、拉普拉斯变换和Z变换,它们分别适用于不同类型的信号(周期/非周期、连续/离散)和问题场景。
二、傅里叶变换(Fourier Transform)
1. 定义与数学表达式
傅里叶变换用于分析连续时间非周期信号的频域特性,其本质是将信号分解为不同频率的正弦/余弦分量的叠加。
- 正变换: F ( ω ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt F(ω)=F[f(t)]=∫−∞∞f(t)e−jωtdt 其中, F ( ω ) F(\omega) F(ω)为频域函数, ω \omega ω为角频率, j j j为虚数单位。
- 逆变换: f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f(t) = \mathcal{F}^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega f(t)=F−1[F(ω)]=2π1∫−∞∞F(ω)ejωtdω ]
2. 应用场景 - 信号频谱分析(如音频、图像的频域处理);
- 线性时不变系统(LTI)的频率响应分析;
- 卷积运算的简化(频域乘法对应时域卷积)。
3. 举例:矩形脉冲信号的傅里叶变换
时域信号:矩形脉冲
f
(
t
)
=
{
A
,
∣
t
∣
≤
τ
/
2
0
,
其他
f(t) = \begin{cases} A, & |t| \leq \tau/2 \\ 0, & \text{其他} \end{cases}
f(t)={A,0,∣t∣≤τ/2其他
傅里叶变换求解:
F
(
ω
)
=
∫
−
τ
/
2
τ
/
2
A
e
−
j
ω
t
d
t
=
A
e
j
ω
τ
/
2
−
e
−
j
ω
τ
/
2
j
ω
=
A
τ
sin
(
ω
τ
/
2
)
ω
τ
/
2
=
A
τ
sinc
(
ω
τ
2
)
F(\omega) = \int_{-\tau/2}^{\tau/2} A e^{-j\omega t} dt = A \frac{e^{j\omega \tau/2} - e^{-j\omega \tau/2}}{j\omega} = A\tau \frac{\sin(\omega \tau/2)}{\omega \tau/2} = A\tau \text{sinc}\left(\frac{\omega \tau}{2}\right)
F(ω)=∫−τ/2τ/2Ae−jωtdt=Ajωejωτ/2−e−jωτ/2=Aτωτ/2sin(ωτ/2)=Aτsinc(2ωτ)
结果分析:频域中呈现辛格函数(
sinc
\text{sinc}
sinc)形状,表明矩形脉冲包含从直流到高频的连续频率分量,主瓣宽度与脉冲宽度成反比(时域越窄,频域越宽)。
三、拉普拉斯变换(Laplace Transform)
1. 定义与数学表达式
拉普拉斯变换是傅里叶变换的扩展,通过引入衰减因子 e − σ t e^{-\sigma t} e−σt( σ \sigma σ为实数),使更多信号(如指数增长信号)满足可积条件,适用于连续时间系统的分析与微分方程求解。
- 正变换: F ( s ) = L [ f ( t ) ] = ∫ 0 − ∞ f ( t ) e − s t d t ( s = σ + j ω ) F(s) = \mathcal{L}[f(t)] = \int_{0^-}^{\infty} f(t) e^{-st} dt \quad (s = \sigma + j\omega) F(s)=L[f(t)]=∫0−∞f(t)e−stdt(s=σ+jω) 其中, s s s 为复频率,积分下限 0 − 0^- 0− 包含 t = 0 t=0 t=0 处的冲激信号。
- 逆变换: f ( t ) = L − 1 [ F ( s ) ] = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) e s t d s f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds f(t)=L−1[F(s)]=2πj1∫σ−j∞σ+j∞F(s)estds
2. 应用场景
- 线性微分方程的求解(将微分运算转化为代数运算);
- 系统函数 H ( s ) H(s) H(s) 的分析(如稳定性、极点分布);
- 电路分析(如RLC电路的暂态响应)。
3. 举例:RLC串联电路的暂态响应
- 微分方程: L d 2 i d t 2 + R d i d t + 1 C i = v ( t ) L\frac{d^2 i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = v(t) Ldt2d2i+Rdtdi+C1i=v(t)
- 拉普拉斯变换求解:
- 对等式两边取拉普拉斯变换,设初始条件为零,得: L s 2 I ( s ) + R s I ( s ) + 1 C I ( s ) = V ( s ) Ls^2 I(s) + R s I(s) + \frac{1}{C} I(s) = V(s) Ls2I(s)+RsI(s)+C1I(s)=V(s)
- 整理得系统函数: H ( s ) = I ( s ) V ( s ) = 1 L s 2 + R s + 1 / C H(s) = \frac{I(s)}{V(s)} = \frac{1}{Ls^2 + R s + 1/C} H(s)=V(s)I(s)=Ls2+Rs+1/C1 ]
- 对 H ( s ) H(s) H(s) 取逆变换,得到时域电流 i ( t ) i(t) i(t)。
- 结果分析:通过拉普拉斯变换,微分方程转化为代数方程,避免了复杂的时域积分运算,极点分布决定了电路的暂态特性(如欠阻尼、过阻尼响应)。
四、Z变换(Z-Transform)
1. 定义与数学表达式
Z变换是离散信号的频域分析工具,对应离散时间序列的拉普拉斯变换,适用于离散时间系统(如数字滤波器)和差分方程求解。
- 正变换: X ( z ) = Z [ x ( n ) ] = ∑ n = − ∞ ∞ x ( n ) z − n X(z) = \mathcal{Z}[x(n)] = \sum_{n=-\infty}^{\infty} x(n) z^{-n} X(z)=Z[x(n)]=∑n=−∞∞x(n)z−n $] 其中, z = r e j ω z = r e^{j\omega} z=rejω 为复变量, r r r为模, ω \omega ω 为数字角频率,级数收敛的区域称为收敛域(ROC)。
- 逆变换: x ( n ) = Z − 1 [ X ( z ) ] = 1 2 π j ∮ C X ( z ) z n − 1 d z x(n) = \mathcal{Z}^{-1}[X(z)] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz x(n)=Z−1[X(z)]=2πj1∮CX(z)zn−1dz ]$ 其中, C C C 为ROC内包围原点的闭合积分路径。
2. 应用场景
- 离散时间系统的分析(如差分方程求解、系统函数 H ( z ) H(z) H(z));
- 数字信号处理(如FIR/IIR滤波器设计);
- 离散随机过程建模。
3. 举例:单位阶跃序列的Z变换
离散序列:单位阶跃
u
(
n
)
=
{
1
,
n
≥
0
0
,
n
<
0
u(n) = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}
u(n)={1,0,n≥0n<0
Z变换求解:
X
(
z
)
=
∑
n
=
0
∞
1
⋅
z
−
n
=
∑
n
=
0
∞
(
z
−
1
)
n
X(z) = \sum_{n=0}^{\infty} 1 \cdot z^{-n} = \sum_{n=0}^{\infty} (z^{-1})^n
X(z)=∑n=0∞1⋅z−n=∑n=0∞(z−1)n这是等比级数,当
∣
z
−
1
∣
<
1
|z^{-1}| < 1
∣z−1∣<1(即
∣
z
∣
>
1
|z| > 1
∣z∣>1)时收敛,和为:
X
(
z
)
=
1
1
−
z
−
1
=
z
z
−
1
(
∣
z
∣
>
1
)
X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1} \quad (|z| > 1)
X(z)=1−z−11=z−1z(∣z∣>1)
结果分析:收敛域为
∣
z
∣
>
1
|z| > 1
∣z∣>1,对应右半平面,逆变换可通过部分分式展开或幂级数展开法求得原序列。