如果一个以为周期的函数在
上满足狄利克雷条件,即:
1.除去有限个第一类间断点外,处处连续
2.分段单调,单调区间的个数有限
则的fourier级数表示为:
在
上处处收敛,且在的连续点处收敛于, 其中,
为基波频率。对上式两边求积分:
所以:
对于
所以:
所以:
综上:
在电子通信领域,常常利用欧拉公式:
所以:
令:
得到fourier级数的复指数形式:
从公式中看出,时域信号可以看成是复指数周期基波信号
以及其倍频信号:
的线性组合。根据欧拉定理,基波复信号可以分解成实步的余弦信号和虚部的正弦信号,由于正弦信号是奇函数,在整数范围内的累加互相抵消为0,只剩下了余弦信号:
每一个高次谐波信号对T来说都是周期的,因此,一个由成谐波关系的复指数信号的现行组合形成的信号f(t)对T来说也是周期的。上式f(t)称为周期信号的傅立叶级数表述,这里面的组合系数为:
同理:
上面的写为统一的形式为:
令
则综合上面各式,可得:
拆分后得到傅里叶级数形式:
傅里叶级数推导出非周期信号的傅里叶变换:
当时,周期信号变为非周期信号,由于, 傅里叶级数为:
当时候,
根据微积分的微元法,外面的累加可以看成求底边为,高为
的图形的面积:
所以:
一个例子从傅里叶级数到傅里叶变换:
此函数的解析式是:
函数图形为:
python代码:
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 1 13:57:21 2021
@author: czl
"""
from pylab import *
x = mgrid[-20:20:0.01]
def fourier_wave():
a0 = 3/16
s=a0
for n in range(1,1000,1):
bn = 0
an = 2*sin((2*n*pi*1.5/16))/(n*pi)
s0 = an*cos(n*x*(2*pi/16))+bn*sin(n*x*(2*pi/16))
s=s+s0
plot(x,s,'orange',linewidth=0.6)
title('fourier_transform')
show()
fourier_wave()
复指数形式的傅里叶变换系数如下,这里的负频率的意义是单位圆的旋转方向,并不是普通意义上“负”的概念。
密度谱:
当 时:
下图表示的就是当时,信号代表的频谱密度。
可以这样理解,当周期无穷大的时候,tau有限,时域里对应白噪声,频域则是一条频率分量相同的直线,平行于X轴,而周期有限的时候,对应频域的值逐渐离散化。
数字电路中的时钟信号时域波形和上图非常相似,它的频谱密度图说明了一个问题,周期性的信号是窄带频谱,长尾明显,但是特定的频率的幅值会很高,这对认证测试来说非常的不利。而一般时钟信号都是周期信号,这在电路中是少不了的。有没有什么办法,改造下时钟的频谱,同时又不影响功能呢?
几类特殊信号的频谱:
1.冲击函数:
冲击函数用 表示,它的傅立叶变换为:
也就是说,冲击函数的频谱是常数1,这意味着,冲击函数包含所有的频率分量,各频率分量的频谱密度相等。这个结果可以由矩形脉冲取极限得到,当脉冲宽度变窄时,其频谱必然展宽:
时域和频域是对偶的,所以,时域内的直流信号的傅立叶变换必然是频域的冲击函数。
数字时钟的频率和带宽:
数字电路中,占空比为1/2的时钟信号,当其HZ频率增加时,并不会改变频谱,所以其信息量并没有变化,并不会导致调制带宽的增加。