信号积分变换的公式推导以及几个例子

52 篇文章 1 订阅

如果一个以T为周期的函数f(x)

\bigg[-\frac{T}{2}, \frac{T}{2}\bigg]

上满足狄利克雷条件,即:

1.除去有限个第一类间断点外,处处连续

2.分段单调,单调区间的个数有限

f(x)的fourier级数表示为:

f(t)\approx \frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[a_ncos(n\omega_0t) + b_nsin(n\omega_0t)\bigg]

\bigg[-\frac{T}{2}, \frac{T}{2}\bigg]

上处处收敛,且在f(x)的连续点处收敛于f(t), 其中,

\omega_0 =\frac{2\pi}{T}

为基波频率。对上式两边求积分:

\\ \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt=\int_{-\frac{T}{2}}^{\frac{T}{2}}\bigg(\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[a_ncos(n\omega_0t) + b_nsin(n\omega_0t)\bigg]\bigg) dt=\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{a_0}{2}dt\\=\frac{a_0}{2}\cdot T

所以:

a_0=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)dt

对于\\ (m=1,2,3,\cdots)

\\ \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(m\omega_0t)dt=\int_{-\frac{T}{2}}^{\frac{T}{2}}\bigg(\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[a_ncos(n\omega_0t) + b_nsin(n\omega_0t)\bigg]\bigg)cos(m\omega_0t) dt\\=0+a_n\int_{-\frac{T}{2}}^{\frac{T}{2}}cos^2(n\omega_0t)dt=a_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1+cos(2n\omega_0t)}{2}dt=a_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1}{2}dt +a_n\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{cos(2n\omega_0 t)}{2}dt\\=a_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1}{2}dt +a_n\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{cos(2n\omega_0 t)}{4n\omega_0}d(2n\omega_0 t)=\frac{a_n}{2}\bigg|_{-\frac{T}{2}}^{\frac{T}{2}}+\frac{a_n}{4n\omega_0}sin(2n\omega_0t)\bigg|_{-\frac{T}{2}}^{\frac{T}{2}}\\=a_n\cdot \frac{T}{2}+0

所以:

\\a_n=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)cos(n\omega_0 t)dt \quad(n=1,2, 3,\cdots)

\\ \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin(m\omega_0t)dt=\int_{-\frac{T}{2}}^{\frac{T}{2}}\bigg(\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[a_ncos(n\omega_0t) + b_nsin(n\omega_0t)\bigg]\bigg)sin(m\omega_0t) dt\\=0+b_n\int_{-\frac{T}{2}}^{\frac{T}{2}}sin^2(n\omega_0t)dt=b_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1-cos(2n\omega_0t)}{2}dt=b_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1}{2}dt -b_n\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{cos(2n\omega_0 t)}{2}dt\\=b_n\int_{-\frac{T}{2}}^{\frac{T}{2}}\frac{1}{2}dt - b_n\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{cos(2n\omega_0 t)}{4n\omega_0}d(2n\omega_0 t)=\frac{b_n}{2}\bigg|_{-\frac{T}{2}}^{\frac{T}{2}}-\frac{b_n}{4n\omega_0}sin(2n\omega_0t)\bigg|_{-\frac{T}{2}}^{\frac{T}{2}}\\=b_n\cdot \frac{T}{2}+0

所以:

\\b_n=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)sin(n\omega_0 t)dt \quad(n=1,2, 3,\cdots)

综上:


a_0=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)dt

\\a_n=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)cos(n\omega_0 t)dt \quad(n=1,2, 3,\cdots)

\\b_n=\frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)sin(n\omega_0 t)dt \quad(n=1,2, 3,\cdots)


在电子通信领域,常常利用欧拉公式:

cos(t)=\frac{e^{it}+e^{-it}}{2}

sin(t)=\frac{e^{it}-e^{-it}}{2i}

所以:

\\f(t)\approx \frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[a_ncos(n\omega_0t) + b_nsin(n\omega_0 t)\bigg]\\=\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[ \frac{a_n}{2}(e^{in\omega_0 t}+e^{-in\omega_0 t})-i\cdot \frac{b_n}{2}(e^{in\omega_0 t}-e^{-in\omega_0 t})\bigg]\\=\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[ \frac{a_n-ib_n}{2}e^{in\omega_0 t}+\frac{a_n+ib_n}{2}e^{-in\omega_0 t}\bigg]

令:

c_0=\frac{a_0}{2}

c_n=\frac{a_n-ib_n}{2}

c_{-n}=\frac{a_n+ib_n}{2}

得到fourier级数的复指数形式:

\\f(t)\approx\frac{a_0}{2}+\sum_{n=1}^{\infty }\bigg[ \frac{a_n-ib_n}{2}e^{in\omega_0 t}+\frac{a_n+ib_n}{2}e^{-in\omega_0 t}\bigg]\\= c_0+\sum_{n=1}^{\infty }\bigg(c_ne^{in\omega_0 t} + c_{-n}e^{-in\omega_0 t}\bigg)=\sum_{n=-\infty}^{\infty}C_ne^{in\omega_0 t}

从公式中看出,时域信号可以看成是复指数周期基波信号

y(t)=e^{i\omega_0t}

以及其倍频信号:

y_n(t)=e^{in\omega_0t}

的线性组合。根据欧拉定理,基波复信号可以分解成实步的余弦信号和虚部的正弦信号,由于正弦信号是奇函数,在整数范围内的累加互相抵消为0,只剩下了余弦信号:

每一个高次谐波信号对T来说都是周期的,因此,一个由成谐波关系的复指数信号的现行组合形成的信号f(t)对T来说也是周期的。上式f(t)称为周期信号的傅立叶级数表述,这里面的组合系数为:

C_0=\frac{a_0}{2}=\frac{1}{2}\cdot \frac{2}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)dt=\frac{1}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)dt

\\C_n=\frac{a_n-ib_n}{2}=\frac{1}{2}\cdot \frac{2}{T}\bigg[\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)cos(n\omega_0 t)dt-i\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)sin(n\omega _0 t)dt\bigg] \\=\frac{1}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)\bigg[cos(n\omega_0 t)-isin(n\omega_0 t)\bigg]dt=\frac{1}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)e^{-in\omega_0 t}dt \quad (n=1,2, 3, \cdots)

同理:

C_{-n}=\frac{1}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)e^{in\omega_0 t}dt \quad (n=1,2, 3, \cdots)

上面的C_0, C_{-n},C_n写为统一的形式为:

C_{n}=\frac{1}{T}\int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)e^{-in\omega_0 t}dt \quad (n=0,\pm1,\pm2, \pm3, \cdots)

\omega _n=n\omega_0 \quad (n=0,\pm1,\pm2, \pm3, \cdots)

则综合上面各式,可得:

\mathbf{f(t)\approx\frac{1}{T}\sum_{n=-\infty }^{\infty}\bigg[ \int^{\frac{T}{2}}_{-\frac{T}{2}}f(t)e^{-i\omega _nt}dt\bigg]e^{i\omega _n t}}


拆分后得到傅里叶级数形式:

\\\mathbf{ F(n )=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt \quad (n \in Z)}

\\\mathbf{f(t)=\sum_{n=-\infty}^{\infty }F(n)\cdot e^{in\omega_0 t}\quad (n \in Z)}


傅里叶级数推导出非周期信号的傅里叶变换:

\\f(t)=\sum_{n=-\infty}^{\infty }F(n)\cdot e^{in\omega_0 t}=\sum_{n=-\infty}^{\infty }\bigg[\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\\=\frac{1}{T}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}

T\rightarrow \infty时,周期信号变为非周期信号,由于\omega_0 =\frac{2\pi}{T}, 傅里叶级数为:

\\ \lim_{T \to \infty }f(t)=\lim_{T \to \infty }\frac{1}{T}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\\=\lim_{T \to \infty }\frac{\omega_0}{2\pi}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\\=\lim_{T \to \infty }\frac{1}{2\pi}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\cdot \omega_0

T\rightarrow \infty时候,\Delta \omega =n\omega_0 - (n-1)\omega_0=\omega_0\rightarrow 0

根据微积分的微元法,外面的累加可以看成求底边为\omega_0,高为

\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}

的图形的面积:

\\ \lim_{T \to \infty }f(t)=\lim_{T \to \infty }\frac{1}{T}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\\=\lim_{T \to \infty }\frac{\omega_0}{2\pi}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\\=\lim_{T \to \infty }\frac{1}{2\pi}\sum_{n=-\infty}^{\infty }\bigg[\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-in\omega_0 t}dt\bigg]\cdot e^{in\omega_0 t}\cdot \omega_0\\=\frac{1}{2\pi}\int_{-\infty }^{\infty}\bigg[\int_{-\infty }^{\infty}f(t)e^{-i\omega t}dt\bigg]e^{i\omega t}d\omega \qquad (-\infty<\omega< \infty )

所以:


F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt \qquad (-\infty<\omega< \infty )

f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega \qquad (-\infty<\omega< \infty )


一个例子从傅里叶级数到傅里叶变换:

此函数的解析式是:

f(x)=\left\{\begin{matrix} 0 \qquad x>-\frac{T}{2}\ and \ x < -\tau \\ 1 \qquad \ \ x >-\tau \ and \ x < \tau\\ 0 \qquad \ \ \ \ x > \tau \ and \ x < \frac{T}{2} \end{matrix}\right.

\\ a_0=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(x)dx = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(x)dx =\frac{1}{T}\int_{-\tau}^{\tau}1\cdot dx = \frac{1}{T}\int_{-\tau}^{\tau}1\cdot dx\\=\frac{1}{T}\bigg|^{\tau}_{-\tau}=\frac{2\tau}{T}

\\ b_n =0

\\ a_n =\frac{2}{T}\int_{-\frac{T}{2}}^{-\frac{T}{2}}f(x)cos(n\cdot \frac{2\pi}{T}\cdot x)dx=\frac{2}{T}\int_{-\tau}^{\tau}1\cdot cos(n\cdot \frac{2\pi}{T}\cdot x)dx \\=\frac{T}{2n\pi}\cdot \frac{2}{T}\int_{-\tau}^{\tau}1\cdot cos(n\cdot \frac{2\pi}{T}\cdot x)d(n\cdot \frac{2\pi}{T}\cdot x)=\frac{1}{n\pi}sin(n\cdot \frac{2\pi}{T}\cdot x)\bigg|_{-\tau}^{\tau}=\frac{2sin(\frac{2n\pi \tau}{T})}{n\pi}

函数图形为:

 python代码:


# -*- coding: utf-8 -*-
"""
Created on Mon Feb  1 13:57:21 2021
@author: czl
"""
from pylab import *
 
x = mgrid[-20:20:0.01]
 
def fourier_wave():
    a0 = 3/16
    s=a0
    
    for n in range(1,1000,1):
        bn = 0
        an = 2*sin((2*n*pi*1.5/16))/(n*pi)
        s0 = an*cos(n*x*(2*pi/16))+bn*sin(n*x*(2*pi/16))
        s=s+s0
        
    plot(x,s,'orange',linewidth=0.6)
    title('fourier_transform')
    show()    
 
fourier_wave()

复指数形式的傅里叶变换系数如下,这里的负频率的意义是单位圆的旋转方向,并不是普通意义上“负”的概念。

f(n\omega_0)=\frac{a_n-ib_n}{2}=\frac{a_n}{2}=\frac{sin(\frac{2n\pi \tau}{T})}{n\pi}

f(n\cdot \frac{2\pi}{T})=\frac{sin(\frac{2n\pi \tau}{T})}{n\pi}

密度谱:

 T\cdot f(n\cdot \frac{2\pi}{T})=2\tau \cdot \frac{sin(\frac{2n\pi \tau}{T})}{\frac{2n\pi\tau}{T}}

\omega_0=\frac{2\pi}{T} \ \ \omega =n\omega_0

T->\infty  时:

F(\omega)=T\cdot f(n\cdot \frac{2\pi}{T})=2\tau \cdot \frac{sin(\omega\tau)}{\omega\tau}

F(n)=T\cdot f(n\cdot \frac{2\pi}{T})=2\tau \cdot \frac{sin(n\omega_0\tau)}{n\omega_0\tau}=2\tau \cdot \frac{sin(n\frac{2\pi\tau}{T})}{n\frac{2\pi\tau}{T}}=2\tau \cdot \frac{sin(n\cdot \pi\cdot s)}{n\cdot \pi\cdot s}

下图表示的就是当T->\infty时,信号代表的频谱密度。

F(n)=T\cdot f(n\cdot \frac{2\pi}{T})=2\tau \cdot \frac{sin(n\omega_0\tau)}{n\omega_0\tau}=2\tau \cdot \frac{sin(n\frac{2\pi\tau}{T})}{n\frac{2\pi\tau}{T}}=2\tau \cdot \frac{sin(n\cdot \pi\cdot s)}{n\cdot \pi\cdot s}

可以这样理解,当周期无穷大的时候,tau有限,时域里对应白噪声,频域则是一条频率分量相同的直线,平行于X轴,而周期有限的时候,对应频域的值逐渐离散化。

数字电路中的时钟信号时域波形和上图非常相似,它的频谱密度图说明了一个问题,周期性的信号是窄带频谱,长尾明显,但是特定的频率的幅值会很高,这对认证测试来说非常的不利。而一般时钟信号都是周期信号,这在电路中是少不了的。有没有什么办法,改造下时钟的频谱,同时又不影响功能呢?

几类特殊信号的频谱:

1.冲击函数:

冲击函数用\delta(t) 表示,它的傅立叶变换为:

F(\omega)=\int_{-\infty}^{\infty}\delta(t)e^{-i\omega t}dt =e^{-i\omega 0} =1\qquad

也就是说,冲击函数的频谱是常数1,这意味着,冲击函数包含所有的频率分量,各频率分量的频谱密度相等。这个结果可以由矩形脉冲取极限得到,当脉冲宽度变窄时,其频谱必然展宽:

时域和频域是对偶的,所以,时域内的直流信号的傅立叶变换必然是频域的冲击函数。

数字时钟的频率和带宽:

数字电路中,占空比为1/2的时钟信号,当其HZ频率增加时,并不会改变频谱,所以其信息量并没有变化,并不会导致调制带宽的增加。


结束!

LLC小信号傅里叶变换是一种常见的信号处理技术,用于将一个信号在频域上进行分析和处理。下面是LLC小信号傅里叶变换的详细推导公式: 假设我们有一个输入信号x(t),该信号可以被表示为一个傅里叶级数的形式: x(t) = Σ(an * cos(nω0t) + bn * sin(nω0t)) 其,an和bn是信号的频谱系数,ω0是信号的基频。 假设我们对这个信号做一个小的变化δx(t),这个变化可以表示为: δx(t) = Σ(δan * cos(nω0t) + δbn * sin(nω0t)) 我们将δx(t)代入某个系统的输入端,然后通过线性时不变的系统得到输出信号y(t)。输出信号可以表示为: y(t) = Σ(cn * cos(nω0t) + dn * sin(nω0t)) 其,cn和dn是输出信号的频谱系数。 利用傅里叶变换的性质,将输入信号和输出信号进行傅里叶变换得到它们的频谱表示: X(ω) = Σ(An * exp(jnω0t)) Y(ω) = Σ(Cn * exp(jnω0t)) 其,An和Cn是输入信号和输出信号的傅里叶系数。 我们可以得到输入信号和输出信号的频谱差异: δX(ω) = X(ω) - X(ω0) (将X(ω0t)按照小信号处理) δY(ω) = Y(ω) - Y(ω0) (将Y(ω0t)按照小信号处理) 在LLC小信号傅里叶变换,我们主要关注输出信号的频谱变化,因此可以得到以下公式: δY(ω) ≈ H(ω) * δX(ω) 其,H(ω)是系统的传递函数,表示在频率ω处输出与输入的变化关系。这个公式可以用来分析系统的频率响应以及进行信号的频域分析。 总结来说,LLC小信号傅里叶变换通过线性化处理信号,并将其表示为频谱系数的形式,从而实现了对信号在频域上的分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值