基础理论
Dempster-Shafer理论(Dempster-Shafer Theory of Evidence),又称证据理论(Theory of Evidence)或信念函数理论(Theory of Belief Functions),是由Arthur P. Dempster和他的学生Glenn Shafer在20世纪60年代和70年代发展起来的一种数学理论,用于处理不确定性和推理。该理论提供了一种在缺乏完备信息的情况下进行推理和决策的方法,是概率论的一种扩展。
核心概念
-
框架(Frame of Discernment):
框架Θ是一个有限的命题集合,包含所有可能的假设。例如,如果我们在推理一个事件是否发生,框架Θ可能包含两个元素 {发生, 不发生}。 -
信度函数(Belief Function):
信度函数Bel是一种从框架Θ的子集到[0, 1]的映射,反映了对某个子集的信任程度。信度函数满足以下条件:- Bel(∅) = 0
- Bel(Θ) = 1
- 如果A和B是Θ的子集且A ⊆ B,则Bel(A) ≤ Bel(B)(单调性)
信度函数反映了证据对某个具体事件发生的支持程度。
-
似然函数(Plausibility Function):
似然函数Pl也是从框架Θ的子集到[0, 1]的映射。对于某个子集A,其定义为:
P l ( A ) = 1 − B e l ( ¬ A ) Pl(A) = 1 - Bel(¬A) Pl(A)=1−Bel(¬A)
其中,¬A表示A的补集。似然函数表示A是可能的程度。
似然函数表示某个事件可能为真的程度,包括不确定性,即该事件没有被证据明确反对的程度。 -
基本概率分配(Basic Probability Assignment, BPA):
基本概率分配m是从框架Θ的子集到[0, 1]的映射,满足以下条件:- m(∅) = 0
- ∑_{A⊆Θ} m(A) = 1
基本概率分配反映了证据的支持程度,仅支持某些具体的子集,而不支持其余的子集。
Dempster的组合规则
Dempster-Shafer理论的一个重要特性是,能够组合来自多个独立证据源的信息。Dempster的组合规则是用来合并两个独立的基本概率分配m1和m2,得到一个新的基本概率分配m。其定义如下:
m
(
C
)
=
1
1
−
K
∑
A
∩
B
=
C
m
1
(
A
)
∗
m
2
(
B
)
m(C) = \frac{1}{1-K} ∑_{A ∩ B = C} m1(A) * m2(B)
m(C)=1−K1A∩B=C∑m1(A)∗m2(B)
其中,K是冲突系数,表示不一致的程度,定义为:
K
=
∑
A
∩
B
=
∅
m
1
(
A
)
∗
m
2
(
B
)
K = ∑_{A ∩ B = ∅} m1(A) * m2(B)
K=A∩B=∅∑m1(A)∗m2(B)
这个规则在合并证据时是非常有用的,尤其是在多源信息融合的场景中。
应用
Dempster-Shafer理论被广泛应用于各种领域,包括但不限于:
- 人工智能和机器学习: 用于处理不确定性和推理。
- 医学诊断: 帮助整合多种诊断信息,提供更准确的诊断结果。
- 信息融合: 在传感器网络中合并来自多个传感器的数据。
- 决策支持系统: 用于在不完全信息下进行决策。
优点和局限性
优点:
- 处理不确定性: 能够在不确定和部分可信的情况下进行推理。
- 灵活性: 不需要完整的概率信息,只需部分证据即可进行推理。
- 信息融合: 能够有效合并多个独立证据源的信息。
局限性:
- 计算复杂度: 在处理大规模问题时,计算复杂度较高。
- 冲突处理: 当证据之间存在高度冲突时,组合规则可能不太有效。
总之,Dempster-Shafer理论提供了一种强大且灵活的方法来处理不确定性,适用于各种需要在不确定环境下进行推理和决策的应用场景。
举例
假设我们有两个独立的证据源,对某个病人是否患有特定疾病进行诊断。框架Θ包含两个元素:{患病, 不患病}。
证据源1和2的基本概率分配(BPA)
假设证据源1(如一个医生的诊断)给出了以下基本概率分配:
- m1({患病}) = 0.6
- m1({不患病}) = 0.2
- m1({患病, 不患病}) = 0.2
证据源2(如一个实验室检验结果)给出了以下基本概率分配:
- m2({患病}) = 0.7
- m2({不患病}) = 0.1
- m2({患病, 不患病}) = 0.2
合并证据
我们可以通过Dempster的组合规则合并这两个独立证据源的信息。
-
首先计算冲突系数K:
K = m 1 ( 患病 ) ∗ m 2 ( 不患病 ) + m 1 ( 不患病 ) ∗ m 2 ( 患病 ) = 0.6 ∗ 0.1 + 0.2 ∗ 0.7 = 0.06 + 0.14 = 0.20 K = m1({患病}) * m2({不患病}) + m1({不患病}) * m2({患病}) = 0.6 * 0.1 + 0.2 * 0.7 = 0.06 + 0.14 = 0.20 K=m1(患病)∗m2(不患病)+m1(不患病)∗m2(患病)=0.6∗0.1+0.2∗0.7=0.06+0.14=0.20 -
计算合并后的基本概率分配m©:
m ( 患病 ) = 1 1 − K × [ m 1 ( 患病 ) ∗ m 2 ( 患病 ) + m 1 ( 患病 ) ∗ m 2 ( 患病 , 不患病 ) + m 1 ( 患病 , 不患病 ) ∗ m 2 ( 患病 ) ] m({患病}) = \frac{1}{1-K} \times [m1({患病}) * m2({患病}) + m1({患病}) * m2({患病, 不患病}) + m1({患病, 不患病}) * m2({患病})] m(患病)=1−K1×[m1(患病)∗m2(患病)+m1(患病)∗m2(患病,不患病)+m1(患病,不患病)∗m2(患病)]
m ( 患病 ) = 1 1 − 0.20 × [ 0.6 ∗ 0.7 + 0.6 ∗ 0.2 + 0.2 ∗ 0.7 ] = 1 0.80 × [ 0.42 + 0.12 + 0.14 ] = 1 0.80 × 0.68 = 0.85 m({患病}) = \frac{1}{1-0.20} \times [0.6 * 0.7 + 0.6 * 0.2 + 0.2 * 0.7] = \frac{1}{0.80} \times [0.42 + 0.12 + 0.14] = \frac{1}{0.80} \times 0.68 = 0.85 m(患病)=1−0.201×[0.6∗0.7+0.6∗0.2+0.2∗0.7]=0.801×[0.42+0.12+0.14]=0.801×0.68=0.85
m
(
不患病
)
=
1
1
−
K
×
[
m
1
(
不患病
)
∗
m
2
(
不患病
)
+
m
1
(
不患病
)
∗
m
2
(
患病
,
不患病
)
+
m
1
(
患病
,
不患病
)
∗
m
2
(
不患病
)
]
m({不患病}) = \frac{1}{1-K} \times [m1({不患病}) * m2({不患病}) + m1({不患病}) * m2({患病, 不患病}) + m1({患病, 不患病}) * m2({不患病})]
m(不患病)=1−K1×[m1(不患病)∗m2(不患病)+m1(不患病)∗m2(患病,不患病)+m1(患病,不患病)∗m2(不患病)]
m
(
不患病
)
=
1
0.80
×
[
0.2
∗
0.1
+
0.2
∗
0.2
+
0.2
∗
0.1
]
=
1
0.80
×
[
0.02
+
0.04
+
0.02
]
=
1
0.80
×
0.08
=
0.10
m({不患病}) = \frac{1}{0.80} \times [0.2 * 0.1 + 0.2 * 0.2 + 0.2 * 0.1] = \frac{1}{0.80} \times [0.02 + 0.04 + 0.02] = \frac{1}{0.80} \times 0.08 = 0.10
m(不患病)=0.801×[0.2∗0.1+0.2∗0.2+0.2∗0.1]=0.801×[0.02+0.04+0.02]=0.801×0.08=0.10
m ( 患病 , 不患病 ) = 1 1 − K × [ m 1 ( 患病 , 不患病 ) ∗ m 2 ( 患病 , 不患病 ) ] = 1 0.80 × [ 0.2 ∗ 0.2 ] = 1 0.80 × 0.04 = 0.05 m({患病, 不患病}) = \frac{1}{1-K} \times [m1({患病, 不患病}) * m2({患病, 不患病})] = \frac{1}{0.80} \times [0.2 * 0.2] = \frac{1}{0.80} \times 0.04 = 0.05 m(患病,不患病)=1−K1×[m1(患病,不患病)∗m2(患病,不患病)]=0.801×[0.2∗0.2]=0.801×0.04=0.05
结果解释
合并后的基本概率分配为:
- m({患病}) = 0.85
- m({不患病}) = 0.10
- m({患病, 不患病}) = 0.05
根据合并后的结果,可以得出以下信度函数和似然函数:
- 信度函数Bel({患病}) = 0.85
- 信度函数Bel({不患病}) = 0.10
- 似然函数Pl({患病}) = 1 - Bel({不患病}) = 0.90
- 似然函数Pl({不患病}) = 1 - Bel({患病}) = 0.15
从这些结果可以看出,结合两个证据源的信息后,病人患病的信度为0.85,似然度为0.90,表明病人患病的可能性较高。而不患病的信度为0.10,似然度为0.15,表明病人不患病的可能性较低。
这个例子展示了如何使用Dempster-Shafer理论合并来自两个独立证据源的信息,以便在不完全信息下进行推理和决策。