割线法的介绍
两点割线法(也称为割线法)是求解非线性方程根的一种迭代方法。它是一种开放方法,与牛顿-拉夫森方法相似,但不需要计算导数,因此在某些情况下更易于应用。这种方法基于线性插值的概念,通过连续估计方程的根来迭代求解。割线法使用两个初始估计值,这两点之间的割线斜率用于逼近方程的根。
割线法的详细解释
如下图所示:
1、选择两个初始近似值 x n − 1 x_{n-1} xn−1和 x n x_n xn(当 n = 1 n=1 n=1时为 x 0 x_0 x0和 x 1 x_1 x1),它们分别是方程 f ( x ) = 0 f(x)=0 f(x)=0的两个近似根。
2、计算函数值 f ( x n − 1 ) f(x_{n-1} ) f(xn−1)和 f ( x n ) f(x_n ) f(xn)。
3、迭代过程:
·使用 x n − 1 x_{n-1} x