使用割线法求解非线性方程

本文介绍了割线法,一种无需计算导数的迭代方法,用于求解非线性方程的根。通过两点初始估计值和线性插值概念,逐步逼近方程的解。文章还提供了MATLAB代码示例,展示了如何使用割线法求解非线性方程cos(x)-x的根。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

割线法的介绍

两点割线法(也称为割线法)是求解非线性方程根的一种迭代方法。它是一种开放方法,与牛顿-拉夫森方法相似,但不需要计算导数,因此在某些情况下更易于应用。这种方法基于线性插值的概念,通过连续估计方程的根来迭代求解。割线法使用两个初始估计值,这两点之间的割线斜率用于逼近方程的根。

割线法的详细解释

如下图所示:
在这里插入图片描述
1、选择两个初始近似值 x n − 1 x_{n-1} xn1 x n x_n xn(当 n = 1 n=1 n=1时为 x 0 x_0 x0 x 1 x_1 x1),它们分别是方程 f ( x ) = 0 f(x)=0 f(x)=0的两个近似根。
2、计算函数值 f ( x n − 1 ) f(x_{n-1} ) f(xn1) f ( x n ) f(x_n ) f(xn)
3、迭代过程:
·使用 x n − 1 x_{n-1} x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hututu1122

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值