python泰勒公式法求正弦函数_看完这篇让你高数不挂科之——泰勒公式

本文介绍了泰勒公式及其在近似复杂函数中的应用。通过导数逼近的思想,展示了泰勒公式如何通过高阶导数构建多项式来逼近原函数,同时保证误差可控。泰勒公式的定义、证明过程以及误差分析被详细阐述,还通过求解(e^x)的例子展示了其在实际计算中的实用性。文章最后探讨了泰勒公式背后的创新思维,将其与机器学习中的回归问题相联系,赞叹数学的魅力。
摘要由CSDN通过智能技术生成

本文始发于个人公众号:TechFlow,原创不易,求个关注

今天的文章我们来讨论大名鼎鼎的泰勒公式,泰勒公式真的非常有名,我相信上过高数课的一定都记得它的大名。即使你翘掉了所有的课,也一定会在考前重点里见过。

我对它的第一映像就是比较难,而且感觉没有太多意思,就是一个近似的函数而已。最近重温了一下有了一些新的心得,希望尽我所能讲解清楚。

泰勒公式的用途

在看具体的公式和证明之前,我们先来了解一下它的用途,然后带着对用途的理解再去思考它出现的背景以及原理会容易许多。这也是我自学这么久总结出来的规律。

泰勒公式本质解决的是近似的问题,比如说我们有一个看起来很复杂的方程,我们直接计算方程本身的值可能非常麻烦。所以我们希望能够找到一个近似的方法来获得一个足够近似的值。

从这里,我们得到了两个重点,一个是近似的方法,另一个是近似的精度。我们既需要找到合适的方法来近似,同时也需要保证近似的精度是可控的。否则一切都没有意义,结合实际其实很好理解,比如我们用机床造一个零件。我们都知道世界上不存在完美的圆,实际上我们也并不需要完美,但是我们需要保证偏差是可控的,并且在一定的范围内。泰勒公式也是一样,它既可以帮助我们完成近似,也可以保证得到的结果是足够精确的。

泰勒公式的定义

我们下面来看看泰勒公式的定义,我们已经知道了它的用途是求一个函数的近似值。但是我们怎么来求呢,其实一个比较朴素的思路是通过斜率逼近。

举个例子:

wAAACwAAAAAAQABAEACAkQBADs=

这是一张经典的导数图,从上图我们可以看到,随着\(\Delta x\)的减小,点\(P_0\)和\(P\)也会越来越接近,这就带来了\(\Delta y\)越来越接近\(\Delta x \cdot f'(x_0)\)。

当然,当\(\Delta x\)比较大的时候显然误差就会比较大,为了缩小误差,我们可以引入二阶导数、三阶导数以及高阶导数。由于我们并不知道函数究竟可以有多少阶导数,我们不妨假设f(x)在区间内一直有(n+1)阶导数,我们试着写出一个多项式来逼近原函数:

\[P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n\]

我们希望这个式子与原值的误差越小越好,究竟要多小才算足够好呢?数学家们给出了定义,希望它是\((x-x_0)^n\)的高阶无穷小。也就是说误差比上\((x-x_0)^n\)的极限是0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值