机器学习数学基础之高数篇——简单的泰勒公式(python版)

本文介绍了泰勒公式的基本概念,通过图像和Python代码展示了如何使用泰勒多项式逼近函数f(x)=cosx,分析了随着阶数增加逼近效果的提升,并提供了在线绘图工具的推荐。
摘要由CSDN通过智能技术生成

不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。

实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。

我们先来看一下泰勒公式的发明者,布鲁克·泰勒——

在这里插入图片描述

布鲁克·泰勒(Brook Taylor,1685-1732),英国数学家,牛顿学派最优秀的代表人物之一,他于1712年的一封信里首次叙述了泰勒公式。

再来看一下高数书上对泰勒公式的定义:

在这里插入图片描述

公式3-5就称为f(x)在x0处的带有拉格朗日余项的n阶泰勒公式。

初看这个泰勒公式的定义,就觉得恢宏大气,气势磅礴。不过光从泰勒公式的定义,很难直观看出它是怎么用多项式逼近原函数的。接下来我们用图像和图表来感受一下——

这里我们先列举出f(x) = cosx在原点的泰勒2阶、4阶、6阶、8阶、10阶的多项式,并用图像表示该函数及其泰勒n阶多项式。

2阶多项式:
g ( x ) = 1 − 1 2 ! x 2 g(x) = 1-\frac{1}{2!}x^{2} g(x)=12!1x2
4阶多项式:
g ( x ) = 1 − 1 2 ! x 2 + 1 4 ! x 4 g(x) = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} g(x)=12!1x2+4!1x4
6阶多项式:
g ( x ) = 1 − 1 2 ! x 2 + 1 4

  • 10
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值