数据分析师做什么工作
数据在公司里面的周期数据从外部而来,最终成为公司的决策依据,是从数据清洗开始,一步一步变成决策。
数据流程对应的职位清洗入库
数据仓库工程师工作内容:工作主要是把技术从用户和商户这里提取的行为数据进行清洗和预处理,使其结构化,是更接近于技术的岗位,相对来说,工作会比较单纯一些。
大数据存储和运算支持
大数据开发工程师工作内容:将大数据存储到分布式平台,并且为下游挖掘提供计算支持,属于纯技术岗位。
数据挖掘
数据挖掘工程师工作内容:这些岗位往往不需要接触最原始的数据,也不会在业务的最前线,但通常需要给业务提供一些间接的能力,比如判断能力(如:两个用户的关系是否为同学)、预测能力(如:预测会产生业务风险用户)、识别能力(如:判断一张图片是否为猫)等等。这类工作本身比较独立,很有创造性,但要求也比较高。
数据深层挖掘
算法工程师工作内容:需要深层次的挖掘数据里面包含的信息,挖掘出高价值的数据。比如今日头条的算法工程师就将用户的深层喜好找到,支付宝将你的信用计算成积分。
数据分析
数据分析师工作内容:将数据和业务结合起来,提炼关键数据,为公司和产品运营提供数据依据。
数据决策
商业分析师,公司高层工作内容:通过提炼的数据和对行业的把控,做出决策,并且为决策提供数据说明和数据预测。
注意:数据从清洗入库到数据决策并没有严格的职业划分
在小公司里面,数据分析师也往往需要做数据挖掘和数据决策。大数据开发工程师也需要做清洗数据和数据挖掘。
简化的数据流程
另外在一些传统行业里面,虽然有数据分析,但是却不是数据驱动。
- 数据驱动公司
对于「数据驱动」的公司来说,我们会先看足够多的数据,再从数据中找到有意思的点,然后进行分析
来决定未来要做什么业务,在「数据驱动」的公司里,数据分析师的地位很高,因为公司的 KPI 是由
你来决定的。
- 业务驱动公司
对于「业务驱动」的公司来说,我们先决定要做什么业务,然后再决定要什么数据,如果没有优秀的领
导者带领,数据分析师一不留神就会沦为「取数机器」。
数据的流程图就会变成下面的样子:
如果流程是这样的话那么,数据分析的工作就是:
提取正确的业务数据,并制作报表和具有洞见的分析。这类岗位可能需要处理很多繁杂的数据口径、需要会 SQL,根据公司的报表体系需要会 Tableau/Excel,但更重要的是能给业务方有效的输入。也正因为这个岗位链接了数据和业务,所以需要非常强的「协同能力」。
数据分析师
总的来说数据分析师是离决策较近,技术较远的位置
收入以及所需技能
1年内技能要求Excel
统计概率
简单SQL
收入
6-8k
工作内容
现阶段的内容完全贴近数据分析,主要是给没有数据部门的产品经理打个下手。针对产品经理提出的需求来做分析。然后用PPT写一些分析报告即可。比如说,社群会员面试的一家互联网教育机构,他们的要求就是用Excel整理学生买课的信息,看看哪一门课程最受大家喜欢之类的。工作流程是流程图2所表示的流程
1-3年技能要求统计概率,
精通SQL,MONGODB
Python或者是R
收入
8-15K
工作内容
相较于初级,理解业务上了一个层次,工作流程接近于流程图2和流程图1之间
一般是IT部门的数据分析师。不仅要会技术还要懂业务,通过发现问题,分析问题,得出结论,为公司的决策做支持。主要干的工作是数据提取、报表开发、撰写分析报告。
3-5年技能要求统计概率,
数学,
精通SQL,MONGO
编程语言Python或者是R
算法
业务知识
收入
15K-25k
工作内容
此时的数据分析师将拥有算法工程师和商业分析师的部分技能
负责一个子产品(一组模块)级别的项目,带领一个团队来全面解决问题,把控手下数据分析师的工作质量。技术方面,能掌控数据分析的整个过程,对数据采集、埋点、造型、进入数据仓库的清洗有良好的手段。可以回答数据能够回答的任何问题。在这里,能与不能的定义边界是,数据分析师用尽了所有可以想到的办法。
5-7+年技能要求统计概率
数学
精通SQL,MONGO
编程语言Python或者是R
各种不同的算法
业务知识
行业知识
收入
25k+
工作内容
此时的工作技能将包括整条数据生产线所需要技能,并且偏重商业分析
带领团队采集,清洗,挖掘,和解读数据。为公司挖掘已有的数据和未知的数据,为公司提供通过数据的决策方案,并且洞悉整个行业的发展和数据,能够通过行业的数据和自己公司的数据得出优秀决策。
后发展道路
数据分析师之后的发展道路可以向下转变为算法工程师,向上可以转变为商业分析师,如果再往上可以成为行业专家。又或者掌握了全数据生产线技能之后可以成为数据驱动顾问,为一个公司成为数据驱动公司做出帮助。
其实在数据分析师3年工作经验起,工作就不仅仅是数据分析师了,已经拥有成为算法工程师和商业分析师的资质了。