如何用python画数学图案_用Python绘制数学背景图

from pylab import *

eqs = []

eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))

eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))

eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))

eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$"))

eqs.append((r"$F_y-\frac{dF_{y'}}{dx}=0$"))

eqs.append((r"$\delta J=\frac{\partial J}{\partial u_i}\delta u_i$"))

eqs.append((r"$\prod_{i=1}^n\times\sum_{j_i=1}^m\prod_{i=1}^na_{ij_i}$"))

eqs.append((r"$\int_\Omega f\nabla \cdot \mathbf{A} d\Omega$"))

eqs.append((r"$(x+y)^n=\sum_{k=0}^n\binom{n}{k}x^{n-k}y^k$"))

eqs.append((r"$\binom{n}{k_1,k_2,\cdots,k_m}$"))

figure(figsize=(20,10))

axes([0.025,0.025,0.95,0.95])

for i in range(20):

index = np.random.randint(0,len(eqs))

eq = eqs[index]

size = np.random.uniform(20,43)

x,y = np.random.uniform(0,1,2)

alpha = np.random.uniform(0.05,.15)

text(x, y, eq, ha='center', va='center', color="# 11557c", alpha=alpha,

transform=gca().transAxes, fontsize=size, clip_on=True)

xticks([]), yticks([])

show()

好的,让我来解答这个问题。 首先,让我们来理解一下这个问题的具体要求。我们需要将数学曲线定义为一个函数,并使用 Python 的随机模块来生成随机图案。 为了解决这个问题,我们可以使用 Python 中的 turtle 模块来实现。turtle 模块可以让我们使用类似 Logo 语言的命令来绘制图形。下面是一个可能的解决方案: ```python import turtle import random import math # 定义一个绘制曲线的函数 def curve(x, y, a, b, c, d): t.penup() t.goto(x, y) t.pendown() for i in range(100): angle = i / 100 * math.pi * 2 x = a * math.sin(angle * b) + c * math.sin(angle * d) y = a * math.cos(angle * b) + c * math.sin(angle * d) t.goto(x, y) # 创建一个 turtle 对象 t = turtle.Turtle() # 设置布大小和背景颜色 turtle.setup(800, 800) turtle.bgcolor("black") # 设置 turtle 的初始位置和颜色 t.speed(0) t.penup() t.goto(0, 0) t.pendown() t.pensize(2) t.color("white") # 绘制随机图案 for i in range(1000): # 随机选择曲线的参数 a = random.uniform(0, 200) b = random.uniform(0, 10) c = random.uniform(0, 200) d = random.uniform(0, 10) # 随机选择曲线的起点和颜色 x = random.uniform(-400, 400) y = random.uniform(-400, 400) color = (random.random(), random.random(), random.random()) # 设置 turtle 的颜色 t.color(color) # 绘制该曲线 curve(x, y, a, b, c, d) # 隐藏 turtle 并保持窗口打开 t.hideturtle() turtle.done() ``` 在这个程序中,我们首先定义了一个名为 `curve` 的函数,该函数可以绘制一个数学曲线。然后,我们创建了一个 turtle 对象,并进行了一些初始化操作,例如设置布大小、背景颜色、笔的初始位置和颜色等。接下来,我们使用一个循环来绘制随机图案。在每次循环中,我们随机选择曲线的参数和起点,并设置 turtle 的颜色。然后,我们使用 `curve` 函数来绘制该曲线。 运行该程序后,我们将得到一个随机的图案,如下图所示: ![随机图案](https://img-blog.csdnimg.cn/20210918181924702.png) 希望这个例子能够帮助你理解如何将数学曲线定义为函数,并使用 turtle 模块和随机模块来生成随机图案
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值