准备数据
1、导入python数据分析模块三剑客:pandas\matplotlib\numpy 2、用read_excel()方法导入数据源
.输出结果截图如下(部分):
可以看到有这些数据:订单日期、市场类别、区域、产品类别、产品名称、预计销售成本、预计毛利、预计利润、预计销售额、销售成本、存货、毛利、利润额、销售额等等。
数据清洗
1、缺失值的处理
可以看到,这份数据很干净,没有空值。缺失值查询也可以用info()方法。
如果数据中有缺失值,我们可以用dropna()方法进行删除,或者用fillna()进行填充。
2、重复值处理
很多数据都是有重复值的,这个在数据分析前必须删除掉,不然影响结果的准确度,清洗方法为drop_duplicates()。
结果显示,无重复。完了,我找的这个数据可能是别人已经清洗过的了,可能不需要我清洗了,打扰了。
数据分析
1、数据整体情况把握,用shape方法查看维度。
结果显示,这个数据有4248行,14列。
2、用describe()方法进行描述性分析
从这个步骤,想必你已经看出Python的强大之处了,一个小方法