python营业数据分析_利用Python对咖啡馆营业做一个简单的数据分析

本文通过Python的数据分析模块pandas、matplotlib和numpy,对咖啡馆营业数据进行清洗和分析。数据包括订单日期、市场类别、产品类别等14列,经过检查无缺失值和重复值。通过shape、describe()等方法对数据进行整体和描述性分析,再结合sort_values()、groupby()和pivot_table()进行排序、分组和复杂条件查询。同时,新增利润率列并进行数据可视化,展示了各产品利润额分布和不同区域清凉茶的利润额统计。数据可视化的图表包括箱式图和雷达图,为数据分析提供直观展示。
摘要由CSDN通过智能技术生成

准备数据

1、导入python数据分析模块三剑客:pandas\matplotlib\numpy 2、用read_excel()方法导入数据源

.输出结果截图如下(部分):

可以看到有这些数据:订单日期、市场类别、区域、产品类别、产品名称、预计销售成本、预计毛利、预计利润、预计销售额、销售成本、存货、毛利、利润额、销售额等等。

数据清洗

1、缺失值的处理

可以看到,这份数据很干净,没有空值。缺失值查询也可以用info()方法。

如果数据中有缺失值,我们可以用dropna()方法进行删除,或者用fillna()进行填充。

2、重复值处理

很多数据都是有重复值的,这个在数据分析前必须删除掉,不然影响结果的准确度,清洗方法为drop_duplicates()。

结果显示,无重复。完了,我找的这个数据可能是别人已经清洗过的了,可能不需要我清洗了,打扰了。

数据分析

1、数据整体情况把握,用shape方法查看维度。

结果显示,这个数据有4248行,14列。

2、用describe()方法进行描述性分析

从这个步骤,想必你已经看出Python的强大之处了,一个小方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值