两平面平行方向向量关系_立体几何平行证明的四大必杀绝技------赞!很赞!!非常赞!!!...

a1f88bcf58003a3598c675a87497c51c.png

类型一:

根据已有平行关系证平行

例题1:已知四棱锥P-ABCD,且G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,且有BC∥平面GEFH,证明GH∥EF。

77a9799d64d22b4772913951a3b9ed34.png

证明:

∵BC∥平面GEFH,

平面GEFH∩平面ABCD=EF且BC⊂平面ABCD

∴BC∥EF

∵EF⊄平面PBC,BC⊂平面PBC

∴平面EF∥平面PBC

∵平面EFGH∩平面PBC=GH

∴EF∥GH

例题2:如图,三棱台DEF-ABC,AB=2DE,且G,H分别为AC,BC的中点,求证:BD∥平面FGH。

60cd815c61d7e5114f60267bcb3aef87.png

证明:

在三棱台DEF-ABC中,AB=2DE

且H为BC的中点,

∴BH∥EF,且BH=EF

∴四边形BHEF是平行四边形

又G是AC中点,H为BC的中点,根据三角形中位线可得:GH∥AB,又GH∩HF=H

∴平面FGH∥平面ABED

∵BD⊂平面ABED

∴BD∥平面FGH

变式:如图所示,在三棱锥P-ABQ中, D,C,E,F分别是AQ,BQ,AP,BP的中点, PD与EQ交于点G,PC与FQ交于点H,连接GH,求证AB∥GH。

6ef7ad5b996b46de1d3dca57def95959.png

类型二:

利用三角形的中位线证平行

例题:如图,四棱锥P-ABCD,AD∥BC,且AD=2BC,且E,F分别为线段AD,PC的中点,求证:AP∥平面BEF。

d0633364add0f81839101c7541a89cbb.png

证明:

连接AC,CE,且AC与BE相交于点O,连接OF,如下图:

c6b2ebca982937706d0e77d3d25a4b4d.png

∵AD∥BC,且AD=2BC,且E是AD的中点,

可得:四边形ABCE是平行四边形

∴O是AC的中点,又F是PC的中点

∴OF是△ACP的中位线

∴OF∥PA

∵PA⊄平面BEF,OF⊂平面BEF

∴AP∥平面BEF

变式:如图,直三棱柱ABC-A1B1C1,点M,N分别为A1B和B1C1的中点,求证:MN∥A1ACC1

4ae1654d56921004c627f4e197b252ce.png

类型三:

利用平行四边形的性质证平行

例题1:在四棱锥P-ABCD中,AB∥CD,CD=2AB,E为PD的中点,求证:AE∥平面PBC。

12db916b6e55a686a36f41dfa6d88023.png

证明:

取PC的中点F,连接EF,BF,如下图:

d1e91edb3325faffc95239690939dba3.png

∵E,F分别是PD,PC的中点

∴EF∥CD,且CD=2EF

又AB∥CD,且CD=2AB

∴AB∥EF,且AB=EF即四边形ABFE是平行四边形

∴AE∥BF

又AE⊄平面PBC,BF⊂平面PBC

∴AE∥平面PBC

例题2:如图,三棱柱ABC-A1B1C1中,底面ABC是等边三角形,侧面BCC1B是矩形,AB=A1B,N是B1C的中点,M是棱AA1上的一点,且AA1⊥CM,证明:MN∥ABC

400ccdb7d3e60d1369b89a5810d09b64.png

证明:

连接BM,取BC得中点P,连接AP,NP,如下图:

3d7e4da9de2078e5cc3e314c99697c87.png

∵BCC1B1是矩形,

∴BC⊥BB1,

∵AA1∥BB1

∴AA1⊥BC

∵AA1⊥MC,BC∩MC=C,

∴AA1⊥平面BCM

∴AA1⊥MB

∵AB=A1B

∴M是AA1的中点,

又P,N分别是CB,CB1的中点,

由三角形的中位线可得:NP∥BB1,且BB1=2NP

∴NP∥MA,且NP=MA

∴四边形AMNP是平行四边形

∴MN∥AP∵MN⊄平面ABC,AP⊂平面ABC

∴MN∥平面ABC

变式:如图,四棱锥P-ABCD,PA⊥底面ABCD,AD∥BC,AD=3,BC=4,且M为线段AD上一点,AM=2MD,N为PC的中点,证明:MN∥平面PAB。

65ba488a943b0d05f7aac890c00a8e19.png

类型四:

利用向量法证平行

1.利用平面法向量

利用法向量证明直线与平面平行的基本原理为:

若平面外一条直线的方向向量垂直于此平面的法向量,则该向量与此平面平行。即若法向量n⊥平面ɑ,且法向量n⊥向量a,则向量a∥平面ɑ

例题:如图,直四棱柱ABCD-A1B1C1D1的底面是正方形,AA1=4,AB=2,E,M,N分别是BC,BB1,A1D的中点,证明:MN∥C1DE

932398b5edeaf52c35e43c797612b420.png

证明:

以D为原点,以DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系如下:

e73dbd70c8b1a7600da4639d5f5e1fb5.png

根据AA1=4,AB=2,

可得点的坐标如下:

D(0,0,0),E(1,2,0),C1(0,2,4)M(2,2,2),N(1,0,2)

则有:

923e81cc2808d6c91778441dc2998170.png

2.利用向量共面定理

向量共面定理:

已知向量a,向量b,向量c两两不共线,若存在实数x,y,使得向量c=xa+yb,则向量a,向量b,向量c共面。具体如下动图所示:

c2fa378950442295ea58e0cfb8ed1798.gif

备注:因为向量是可以移动的,所以几个向量共面不代表向量所对应的直线是相互共面的。

例题:如图所示四棱锥P-ABCD中,底面ABCD为正方形,AB=4,PA=2,E为PD的中点,证明:PB∥平面AEC

372e912728b9cae39ab8b048bc18cf70.png

证明:

以A为原点,以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立空间直角坐标系如下:

3ea24cfbd1a52d5032934eba1bc1257a.png

根据AB=4, PA=2,

可得点的坐标如下:

A(0,0,0),P(0,0,2) ,B(4,0,0)D(0,4,0) ,C(4,4,0)

∵E为PD的中点,

∴E(0,2,1)

bc6ae6dcc54d0cd696e48f03a29975bf.png

3.利用平面向量共线定理

平面向量共线定理:

不共线的两条直线所对应的向量分别为向量a,向量b,若向量ab,则向量a∥向量b接下来用平面向量共线定理再解上面用法向量求解的例题

例题:如图,直四棱柱ABCD-A1B1C1D1的底面是正方形,AA1=4,AB=2,E,M,N分别是BC,BB1,A1D的中点,证明:MN∥C1DE

932398b5edeaf52c35e43c797612b420.png

证明:

以D为原点,以DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系如下:

e73dbd70c8b1a7600da4639d5f5e1fb5.png

根据AA1=4,AB=2,

可得点的坐标如下:

D(0,0,0),E(1,2,0)M(2,2,2),N(1,0,2)

则有:

1d340c53cf5da04ad1e7583d3a4f527f.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值