矩阵论及其应用_群表示论笔记(一)

前几天开始写群表示论的学习笔记,突然想能不能把笔记上传知乎,于是便试着做了。

去年开始很多同学开了个人公众号。我比较懒,而且除了这一点东西好像没什么可以分享(说一些其他的说不定会被封号2333)。目前来看是开不了公众号,知乎虽然没什么氛围(当然微信也没有),但正好可以分享我这些非常非常naive的学习笔记,我写笔记用的是texmacs,和latex等tex工具不同,因此在写latex公式的时候遇到了一些困难,有的图表索性就在texmacs里面做好了然后截图,复制和粘贴了(吐槽一下,对于我等咸鱼来说texmacs真的是比latex好用的多,根本不需要写公式)。

最近刚好看到了群表示论,并且表示论好像在其他学科应用比较多(比如化学,计算机好像也有),我看的部分不是特别难。即使是非数学系物理系的朋友也不妨看一看(虽然很可能没有人看2333),如果只是想大概看懂的话,真的不是特别难。

我的表示论笔记内容以及今后可能有的代数内容基本都是来自于Michael Artin的Algebra,知道这本书的人都应该知道这是一本对初学者很友好的书,所以我笔记的内容都是很简单的群表示,不会涉及类似于李代数的表示。之后也可能上传其他内容,比如常微分方程,微分几何,拓扑之类。群表示论需要一定前置知识,主要是群论,如果真的有人会看这个笔记(可能性极小)并且对于前置知识(比如什么是置换群

,什么是
,他们为什么同构)有问题我会考虑上传关于群的基本知识的笔记。至于这个笔记本身,其实主要是自己看的,即使没有人看,只要有时间和精力的话,我也会慢慢更新。也非常欢迎有兴趣投稿的同学分享自己的文章或者笔记(主要数学为主,可能涉及一些物理,其他学科也未尝不可)

最后,鉴于本人数学和英语水平有限,如果笔记中有错误(比如公式错误,术语翻译错误以及错别字),恳请指出。


我们将

表示为

基本概念和例子

同态

称为群
的一个矩阵表示。
是这个表示的维数。

下面用

表示群元素
的像,这是一个可逆复矩阵,由同态的性质可以知道:

例如,

表示为
,因此
可以被满足下列条件的矩阵
表示:

学习过群论之后,我们知道了

是同构的,因此我们可以用这样的矩阵来表示
(也叫
的标准表示):

4000d5e84b6bae66853f362309c4fadc.png

这个表示的维数是2

同样,

中的元素都是置换,那么我们自然可以想到把奇置换映到(-1),偶置换映到(1),把这个表示记为
,这个表示的维数是1,值得注意的是这里是元素为1和-1的1阶矩阵,应该区别其与逆序数。同样把所有元素都映到(1)也是满足条件的,并且所有群都有一个这样的矩阵表示,称为trivial representation,在这里记为T。

一个矩阵表示

的特征(character)
定义为
=trace

5a06dfad360282e614921f2a03edcf4d.png

表格有几个很有趣的性质:首先,将其的每一列看作向量,那么所有不同的向量是相互正交的,对每一行也是这样的。我们将在之后涉及到这个性质。

关于其他简单的性质:

等于这个表示的维数,也叫做这个特征的维数

• 共轭等价类的特征是相同的

对于前者,

等于矩阵维数,对于后者,群共轭意味着矩阵共轭(也就是相似),不改变trace。

下面考虑群在一个线性空间上的表示,我们将复线性空间

上所有可逆线性算子组成的群记为
,这里的线性空间假设为有限维并且不是零空间。

称如下的同态是一个群

在复线性空间
的表示:

矩阵表示可以看作是在列向量空间上的表示。

有限旋转群作用在三维欧氏空间上是不依赖于基的选取,对应的正交算子称作这个群的标准表示(和上面

确实有矛盾之处)。

适当选取V的基底

后可以给出
的同构。

我们由此可以定义群关于线性空间V的线性算子的作用,即等于其对应的线性算子对空间的作用。其满足线性性,结合律,加法分配律。

从表示

到表示
的同构是两个线性空间的同构:
,和
的作用是相容的,即:

对所有

中的
中的
都成立。同样如果
是一个同构,
是对应的基,那么对应的矩阵表示
是相等的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值