pytorch 中的 @ 和 * 运算符

本文详细介绍了在PyTorch中使用@和*操作符进行矩阵运算的方法。@操作符用于实现标准的矩阵乘法,而*操作符则用于两个矩阵对应元素之间的逐位乘法。通过具体实例展示了这两种运算的不同之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
x = torch.tensor([[1, 2], [3, 4]])
y = torch.tensor([[2, 1], [4, 3]])
print("x_shape", x.shape)
print("y_shape", y.shape)

c = x@y
print("c_shape", c.shape)
print(c)


# 结果: 
x_shape torch.Size([2, 2])
y_shape torch.Size([2, 2])
c_shape torch.Size([2, 2])
tensor([[10,  7],
       [22, 15]])

 

import torch
x = torch.tensor([[1, 2], [3, 4]])
y = torch.tensor([[2, 1], [4, 3]])
print("x_shape", x.shape)
print("y_shape", y.shape)


d = x*y
print("d_shape", d.shape)
print(d)



# 结果:
x_shape torch.Size([2, 2])
y_shape torch.Size([2, 2])
d_shape torch.Size([2, 2])
tensor([[ 2,  2],
        [12, 12]])

 

所以,@ 和 * 代表矩阵的两种相乘方式:

@ 表示常规的数学上定义的矩阵相乘;

* 表示两个矩阵对应位置处的两个元素相乘

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值